Skip to main content
Log in

Integrating DEM and field data to unravel the impact of bedrock topography on Late Quaternary ice flows: A case study of the Lake Mistassini area, Canada

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The topography of bedrock beneath an ice sheet is one of the several factors that influence the flow of ice. It has the potential to change the direction of ice movement, which can lead to confusion when interpreting glacial striae and landforms. In the Mistassini area in Canada, formerly glaciated by the Laurentide Ice Sheet during several phases of the Quaternary, we used a high-resolution digital elevation model to calculate hillshade, slope gradient, and slope aspect. These derived topographic parameters were then combined with mapped glacial indicators to investigate how the underlying bedrock topography potentially influenced the direction of ice flow. The results show that during the older southeastward (SE) event, there was a notable deflection of the ice towards the south in the southern part of the study area. During the southward (S) event, and to a lesser extent south–southeastward (SSE) event, the impact of bedrock topography on ice movement appears to be less pronounced than during the previous southeastward phase (SE). As the ice gradually thinned during the final south–southwestward flow (SSW), the ice sheet became increasingly sensitive to the local bedrock topography. This sensitivity was particularly pronounced in the southern part of the area, where a dominant north-south topographic pattern constrained the ice to flow towards the south. This study demonstrates the feasibility of conducting a quick assessment of the influence of bedrock topography on paleo-ice flows through morphometric analysis of current topography and glacial evidence preserved on bedrock surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Allard G O and Cimon J 1974 Minimal Pleistocene glaciation in the Chibougamau area, Québec; Ass. Géol. et Ass. Minéral. Canada; Abstract of papers, annual meeting, 1.

  • Bergeron R 1957 Late Precambrian rocks of the north shore of the St Lawrence River and of the Mistassini and Otish Mountains areas, Québec; In: Proterozoic Canada (ed.) Gill J E, R. Soc. Canada Spec. Publ. 2 124–131, https://doi.org/10.3138/9781487595838-022.

  • Bolstad P and Stowe T 1994 An evaluation of DEM accuracy: Elevation, slope and aspect; Photogramm. Eng. Remote Sens. 60(11) 1327–1332.

    Google Scholar 

  • Bostock H S 1970 Physiographic regions of Canada; Geol. Surv. Canada 1254A, https://doi.org/10.4095/108980.

  • Bouchard M A 1986 Géologie des dépôts meubles de la région de Témiscamie,Territoire du Nouveau-Québec; Ministère de l’Énergie et des Ressources Nat. Québec, Rapport technique MM 83-03, 90p.

  • Bouchard M A, Cadieux B and Goutier F 1984 L’origine et les caractéristiques des lithofaciès du till dans le secteur nord du lac Albanel, Québec: Une étude de la dispersion glaciaire clastique; Can. Inst. Min. Metall., Special Vol., pp. 244–260.

  • Brecheisena Z S and Richter D D 2014 Ordering Interfluves: A simple proposal for understanding critical zone critical zone evolution; Proc. Earth. Planet. Sci. 10 77–81, https://doi.org/10.1016/j.proeps.2014.08.015.

    Article  ADS  CAS  Google Scholar 

  • Brecheisen Z S, Richter D D, Moon S and Halpin P N 2021 Quantitative analysis of hillshed geomorphology and critical zone function: Raising the hillshed to watershed status; GSA Bull. 1–2, https://doi.org/10.1130/B35724.1.

  • Briner J P 2007 Supporting evidence from the New York drumlin field that elongate subglacial bedforms indicate fast ice flow; Boreas 36 143–147, https://doi.org/10.1111/j.1502-3885.2007.tb01188.x.

    Article  Google Scholar 

  • Brushett D 2014 Prospecting under cover: Using knowledge of glacial processes in mineral exploration glaciers and glaciation: General principles; Geol. Surv. Newfoundl Labrador 25.

  • Cadieux B 1986 La dispersion glaciaire des fragments de roches dans la région du lac Mistassini, Québec; M.S. thesis, Univ. Montréal, 146p.

  • Caty J L 1976 Région du lac Mistassini, Québec: Stratigraphie et sédimentologie de la Formation de Papaskwasati; Ministère de l’Énergie et des Ressources Nat. Québec, Rapport technique DVP 423, 270p.

  • Clark C D 1993 Mega-scale glacial lineations and cross-cutting ice-flow landforms; Earth Surf. Process. Landforms 18 1–29, https://doi.org/10.1002/esp.3290180102.

    Article  ADS  Google Scholar 

  • Clark C D, Hughes A L C, Greenwood S L, Spagnolo M F and Ng S L 2009 Size and shape characteristics of drumlins, derived from a large sample and associated scaling laws; Quat. Sci. Rev. 28(7) 677–692, https://doi.org/10.1016/j.quascirev.2008.08.035.

    Article  ADS  Google Scholar 

  • Conrad O, Bechtel B and Bock M 2015 System for automated geoscientific analyses (SAGA) v. 2.1.4; Geosci. Model Dev. 8 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015.

    Article  ADS  Google Scholar 

  • Corti G, Zeoli A, Belmaggio P and Folco L 2008 Physical modeling of the influence of bedrock topography and ablation on ice flow and meteorite concentration in Antarctica; J. Geophys. Res. 113 1–18, https://doi.org/10.1029/2006JF000708.

    Article  Google Scholar 

  • Daubois V and Dubé-Loubert H 2018 Géologie des dépôts de surface de la région de Clova, Haute-Mauricie; Ministère de l’Énergie et des Ressources Nat. Québec, Rapport technique RP 2018-03, 28p.

  • DeCorta H 1988 Les dépôts quaternaires de la région lac Rohault-lac Boisvert (sud de Chibougamau); aspects de la dispersion glaciaire clastique; M.S. thesis, Univ du Québec à Montréal, 112p.

  • Dilabio R N W 1981 Glacial dispersal of rocks and minerals at the south end of lac Mistassini, Québec, with special reference to the Icon dispersal train; Geol. Surv. Canada Bull. 3 46.

    Google Scholar 

  • Dionne J C 2001 Erratiques de dolomie au cap Colombier, sur la haute Côte-Nord du Saint-Laurent estuarien; Géogr. Phys. Quat. 58 101–107.

    Google Scholar 

  • Dionne J C and Bernatchez P 2000 Les erratiques de dolomie sur le rivage des Escoumins, Côte Nord de l’estuaire maritime du Saint-Laurent, Québec; Atlantic Geosci. 36 117–129, https://doi.org/10.4138/2015.

    Article  Google Scholar 

  • El Amrani M 2018a Géologie des dépôts de surface au sud du lac Mistassini; Ministère de l’Énergie et des Ressources Nat. Québec, Rapport technique RP 2018-01, 17p.

  • El Amrani M 2018b Géologie des dépôts de surface au nord-est de la baie Abatagouche; Ministère de l’Énergie et des Ressources Nat. Québec, Rapport technique RP 2018-03, 14p.

  • El Amrani M 2018c Géologie des dépôts de surface au sud-est de la baie Abatagouche; Ministère de l’Énergie et des Ressources Nat. Québec, Rapport technique RP 2018-02, 14p.

  • El Amrani M 2019 Géologie des dépôts de surface dans la partie SE de la région de la rivière Mistassini (SNRC 32H01, 32H02, 32H07 et 32H08); Ministère de l’Énergie et des Ressources Nat. Québec, Rapport technique RP 2019-03, 17p.

  • El Amrani M, Gélinas T K and Carré A 2018 Occurrence, significance and origin of banded iron formation erratics south of lake Mistassini, Quebec, Canada; Quaternaire 29 169–176, https://doi.org/10.4000/quaternaire.8926.

    Article  Google Scholar 

  • González-Álvarez I, Goncalves M A and Carranza E J M 2020 Introduction to the special issue challenges for mineral exploration in the 21st Century: Targeting mineral deposits under cover; Ore Geol. Rev. 126 103785, https://doi.org/10.1016/j.oregeorev.2020.103785.

    Article  Google Scholar 

  • Graham A G C, Larter R D and Gohl K 2009 Bedform signature of a West Antarctic palaeo-ice stream reveals a multi-temporal record of flow and substrate control; Quat. Sci. Rev. 28 2774–2793, https://doi.org/10.1016/j.quascirev.2009.07.003.

    Article  ADS  Google Scholar 

  • Greenwood S L, Simkins L M, Winsborrow M C M and Bjarnadóttir L R 2021 Exceptions to bed-controlled ice sheet flow and retreat from glaciated continental margins worldwide; Sci. Adv. 7 1–12, https://doi.org/10.1126/sciadv.abb6291.

    Article  Google Scholar 

  • Herman F, De Doncker F, Delaney I, Prasicek G and Koppes M 2021 The impact of glaciers on mountain erosion; Nat. Rev. Earth Environ. 2 422–435, https://doi.org/10.1038/s43017-021-00165-9.

    Article  ADS  Google Scholar 

  • Hughes A L C, Clark C D and Jordan C J 2014 Flow-pattern evolution of the last British Ice Sheet; Quat. Sci. Rev. 89 148–168, https://doi.org/10.1016/j.quascirev.2014.02.002.

    Article  ADS  Google Scholar 

  • Jenks G F 1967 The data model concept in statistical mapping; Int. Yearbook Cartogr. 7 186–190.

    Google Scholar 

  • Kalm V and Gorlach A 2014 Impact of bedrock surface topography on spatial distribution of Quaternary sediments and on the flow pattern of late Weichselian glaciers on the East European Craton (Russian Plain); Geomorphology 207 1–9, https://doi.org/10.1016/J.GEOMORPH.2013.10.022.

    Article  ADS  Google Scholar 

  • Kehew A E, Esch J M, Kozlowski A L and Ewald S K 2012 Glacial landsystems and dynamics of the Saginaw Lobe of the Laurentide Ice; Quat. Int. 260 21–31, https://doi.org/10.1016/j.quaint.2011.07.021.

    Article  Google Scholar 

  • Klassen R A 2001 A Quaternary geological perspective on geochemical exploration in glaciated terrain; In: Drift Exploration in Glaciated Terrain (eds) McClenaghan M B, Bobrwskyp T, Hall G E M and Cook S J, Geol. Soc. Spec. Publ. London 185 1–17.

  • Knight P G 1994 Ice flow around large obstacles as indicated by basal ice exposed at the margin of the Greenland ice sheet; J. Glaciol. 40(135) 359–367, https://doi.org/10.3189/S0022143000007449.

    Article  ADS  Google Scholar 

  • Marshall S J, Clarke G K C, Dyke A S and Fisher D A 1996 Geologic and topographic controls on fast flow in the Laurentide and Cordilleran Ice Sheets; J. Geophys. Res. Solid. Earth 101(B8) 17,827–17,839, https://doi.org/10.1029/96JB01180.

    Article  Google Scholar 

  • Martineau G, Bouchard M and Lacroix P 1984 Aspects de la géologie du Quaternaire de Chibougamau; Ministère de l’Énergie et des Ressources Québec, Rapport technique MB 84-13, 24p.

  • Mckenzie M A, Simkins L M, Principato S and Munevar-Garcia S 2022 Streamlined subglacial bedform sensitivity to bed characteristics across the deglaciated Northern Hemisphere; Earth Surf. Process. Landforms, pp. 1–16, https://doi.org/10.1002/esp.5382.

  • Mckenzie M A, Miller L E, Slawson J S, MacKie E J and Wang S 2023 Differential impact of isolated topographic bumps on glacial ice flow and subglacial processes; Cryosphere 17 2477–2486, https://doi.org/10.5194/tc-17-2477-2023.

    Article  ADS  Google Scholar 

  • McMartin I and Paulen R P 2009 Ice-flow indicators and the importance of ice-flow mapping for drift prospecting; In: Application of Till and Stream Sediment Heavy Mineral and Geochemical Methods to Mineral Exploration in Western and Northern Canada (eds) Roger C Paulen and McMartin I, Edn: Short Course Notes 18; Geol. Ass. Canada, pp. 18–34.

  • Mukherjee S, Joshi P K, Mukherjee S, Ghosh A, Garg R D and Mukhopadhyay A 2013 Evaluation of vertical accuracy of open source Digital Elevation Model; Int. J. Appl. Earth Observ. Geoinf. 21 205–217, https://doi.org/10.1016/j.jag.2012.09.004.

    Article  ADS  Google Scholar 

  • Nakamura K, Doi K and Shibuya K 2007 Why is Shirase Glacier turning its flow direction eastward?; Polar Sci. 1 63–71, https://doi.org/10.1016/j.polar.2007.09.003.

  • Nesje A and Whillans I M 1994 Erosion of Sognefjord, Norway; Geomorphology 9 33–45, https://doi.org/10.1016/0169-555X(94)90029-9.

    Article  ADS  Google Scholar 

  • Paradis S J and Boisvert E 1995 Séquence des écoulements glaciaires dans le secteur de Chibougamau-Némiscau, Québec; Curr. Res. Geol. Surv. Canada 1995 259–264.

  • Parent M, Paradis S J and Doiron A 1996 Palimpsest glacial dispersal trains and their significance for drift prospecting; J. Geochem. Explor. 56 123–140, https://doi.org/10.1016/0375-6742(96)00011-8.

    Article  CAS  Google Scholar 

  • Paterson W S B 1972 Laurentide Ice Sheet: Estimated volume during Late Wisconsin; Rev. Geophys. 10 885–917, https://doi.org/10.1029/RG010i004p00885.

    Article  ADS  Google Scholar 

  • Paulen R C and Mcclenaghan M B 2015 Late Wisconsin ice-flow history in the Buffalo Head Hills; Can. J. Earth Sci. 52 1–17, https://doi.org/10.1139/cjes-2014-0109.

    Article  CAS  Google Scholar 

  • Paxman G J G 2023 Patterns of valley incision beneath the Greenland Ice Sheet revealed using automated mapping and classification; Geomorphology 436 108778, https://doi.org/10.1016/j.geomorph.2023.108778.

    Article  Google Scholar 

  • Prichonnet G and Beaudry L 1990 Évidence d’un écoulement glaciaire sud, antérieur à l’écoulement sud-ouest du Wisconsinien supérieur, région de Chapais, Québec; Rech. En Cours Comm. Géol. Canada 90–1 331–338.

    Google Scholar 

  • Principato S M, Moyer A N, Hampsch A G and Ipsen H A 2016 Using GIS and streamlined landforms to interpret palaeo-ice flow in northern Iceland; Boreas 45 470–482, https://doi.org/10.1111/bor.12164.

    Article  Google Scholar 

  • Putninš A and Henriksen M 2017 Reconstructing the flow pattern evolution in inner region of the Fennoscandian Ice Sheet by glacial landforms from Gausdal Vestfjell area, south-central Norway; Quat. Sci. Rev. 163 56–71, https://doi.org/10.1016/j.quascirev.2017.03.008.

    Article  ADS  Google Scholar 

  • Rice J M, Ross M, Paulen R C, Kelley S E, Briner J P, Neudorf C M and Lian O B 2019 Refining the ice flow chronology and subglacial dynamics across the migrating Labrador Divide of the Laurentide Ice Sheet with age constraints on deglaciation; J. Quat. Sci. 34(7) 519–535, https://doi.org/10.1002/jqs.3138.

    Article  Google Scholar 

  • Smith M J, Rose J and Booth S 2006 Geomorphological mapping of glacial landforms from remotely sensed data: An evaluation of the principal data sources and an assessment of their quality; Geomorphology 76 148–165, https://doi.org/10.1016/j.geomorph.2005.11.001.

    Article  ADS  Google Scholar 

  • Sookhan S, Eyles N, Bukhari S and Paulen R C 2021 LiDAR-based quantitative assessment of drumlin to mega-scale glacial lineation continuums and flow of the paleo Seneca-Cayuga paleo-ice stream; Quat. Sci. Rev. 263 107003, https://doi.org/10.1016/j.quascirev.2021.107003.

    Article  Google Scholar 

  • Stokes C R and Clark C D 1999 Geomorphological criteria for identifying Pleistocene ice streams; Annal. Glaciol. 28 67–74, https://doi.org/10.3189/172756499781821625.

    Article  ADS  Google Scholar 

  • Stokes C R and Clark C D 2002 Are long subglacial bedforms indicative of fast ice flow?; Boreas 31 239–249, https://doi.org/10.1111/j.1502-3885.2002.tb01070.x.

    Article  Google Scholar 

  • Stokes C R 2013 Glacial landforms, ice sheets: Evidence of glacier flow directions (eds) Scott A E and Cary J M; Encycl. Quat. Sci., 2nd edn, pp. 895–908, https://doi.org/10.1016/B978-0-444-53643-3.00092-3.

  • Sugden D E 1977 Reconstruction of the morphology, dynamics, and thermal characteristics of the Laurentide Ice Sheet at its maximum; Arctic Alpine Res. 9(1) 21–47.

    Article  Google Scholar 

  • Sugden D E 1978 Glacial erosion by the Laurentide Ice Sheet; J. Glaciol. 20 367–391.

    Article  ADS  Google Scholar 

  • Thériault R and Beauséjour S 2012 Carte géologique du Québec 1/2 000 000; Ministère de l’Énergie et des Ressources Nat. Québec, Rapport technique DV 2012-06, 8p.

  • Vaughan D G, Corr H F J and Ferraccioli F 2006 New boundary conditions for the West Antarctic Ice Sheet: Subglacial topography beneath Pine Island Glacier; Geophys. Res. Lett. 33 2–5, https://doi.org/10.1029/2005GL025588.

    Article  Google Scholar 

  • Veillette J J 2004 Ice flow chronology and palimpsest, long-distance dispersal of indicator clasts, north of the St. Lawrence River Valley, Québec; Géogr. Phys. Quat. 58 187–216, https://doi.org/10.7202/013138ar.

    Article  Google Scholar 

  • Warren B 1974 Dépôts meubles de la région de la Baie-du-Poste, comtés d’Abitibi-Est et de Roberval; Ministère des Richesses Nat. Québec, Rapport technique DP-267, 8p.

  • Wechsler S 2006 Uncertainties associated with digital elevation models for hydrologic applications: A review; Hydrol. Earth Syst. Sci. Discuss. 3 2343–2384, https://doi.org/10.5194/hess-11-1481-2007.

    Article  ADS  Google Scholar 

  • Winsborrow M C M, Clark C D and Stokes C R 2010 What controls the location of ice streams?; Earth Sci. Rev. 103 45–59, https://doi.org/10.1016/j.earscirev.2010.07.003.

    Article  ADS  Google Scholar 

  • Wise S 2000 Assessing the quality for hydrological applications of digital elevation models derived from contours; Hydrol. Process. 14 1909–1929, https://doi.org/10.1002/1099-1085(20000815/30)14:11/12%3C1909::AID-HYP45%3E3.0.CO;2-6.

    Article  ADS  Google Scholar 

  • USGS 2022 NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. 2019; NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/ASTER/ASTGTM.003.

Download references

Acknowledgements

Fieldwork assistance was provided by students A Archambault, T-K Gélinas, A Carré, and H Dubé-Loubert, Geologist at the Québec Ministry of Energy and Natural Resources. We thank anonymous reviewers for their constructive comments and suggestions. Financial and logistical support for this study was provided by the BCGQ (Bureau de la Connaissance Géoscientifique du Québec) of the Ministry of Energy and Natural Resources of Québec, Canada.

Author information

Authors and Affiliations

Authors

Contributions

EAM: Fieldwork and data collection, data compilation and processing, maps preparation, and manuscript writing, AA, CS, DK, HY, BL, MN: Manuscript reviewing, OL: Manuscript writing.

Corresponding author

Correspondence to Mohamed El Amrani.

Additional information

Communicated by George Mathew

Corresponding editor: George Mathew

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Amrani, M., Amine, A., Courba, S. et al. Integrating DEM and field data to unravel the impact of bedrock topography on Late Quaternary ice flows: A case study of the Lake Mistassini area, Canada. J Earth Syst Sci 133, 40 (2024). https://doi.org/10.1007/s12040-023-02251-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02251-6

Keywords

Navigation