Skip to main content
Log in

Machine Learning Accelerates De Novo Design of Antimicrobial Peptides

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Efficient and precise design of antimicrobial peptides (AMPs) is of great importance in the field of AMP development. Computing provides opportunities for peptide de novo design. In the present investigation, a new machine learning-based AMP prediction model, AP_Sin, was trained using 1160 AMP sequences and 1160 non-AMP sequences. The results showed that AP_Sin correctly classified 94.61% of AMPs on a comprehensive dataset, outperforming the mainstream and open-source models (Antimicrobial Peptide Scanner vr.2, iAMPpred and AMPlify) and being effective in identifying AMPs. In addition, a peptide sequence generator, AP_Gen, was devised based on the concept of recombining dominant amino acids and dipeptide compositions. After inputting the parameters of the 71 tridecapeptides from antimicrobial peptides database (APD3) into AP_Gen, a tridecapeptide bank consisting of de novo designed 17,496 tridecapeptide sequences were randomly generated, from which 2675 candidate AMP sequences were identified by AP_Sin. Chemical synthesis was performed on 180 randomly selected candidate AMP sequences, of which 18 showed high antimicrobial activities against a wide range of the tested pathogenic microorganisms, and 16 of which had a minimal inhibitory concentration of less than 10 μg/mL against at least one of the tested pathogenic microorganisms. The method established in this research accelerates the discovery of valuable candidate AMPs and provides a novel approach for de novo design of antimicrobial peptides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. United Nations Environment Programme (2023) Bracing for Superbugs: Strengthening environmental action in the One Health response to antimicrobial resistance. Geneva. https://www.unep.org/resources/superbugs/environmental-action. Accessed 5 Mar 2023

  2. Huemer M, Shambat SM, Brugger SD et al (2020) Antibiotic resistance and persistence—implications for human health and treatment perspectives. EMBO Rep 21(12):51034. https://doi.org/10.15252/embr.202051034

    Article  CAS  Google Scholar 

  3. Hafeez AB, Jiang X, Bergen PJ et al (2021) Antimicrobial Peptides: an update on classifications and databases. Int J Mol Sci 22(21):11691. https://doi.org/10.3390/ijms222111691

    Article  CAS  Google Scholar 

  4. Luo Y, Song Y (2021) Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci 22(21):11401. https://doi.org/10.3390/ijms222111401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mahlapuu M, Håkansson J, Ringstad L et al (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194. https://doi.org/10.3389/fcimb.2016.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deo S, Turton KL, Kainth T et al (2022) Strategies for improving antimicrobial peptide production. Biotechnol Adv 59:107968. https://doi.org/10.1016/j.biotechadv.2022.107968

    Article  CAS  PubMed  Google Scholar 

  7. Van Oort CM, Ferrell JB, Remington JM et al (2021) AMPGAN v2: machine learning-guided design of antimicrobial peptides. J Chem Inf Model 61(5):2198–2207. https://doi.org/10.1021/acs.jcim.0c01441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Yang L, Tian Z et al (2021) Large-scale screening of antifungal peptides based on quantitative structure-activity relationship. ACS Med Chem Lett 13(1):99–104. https://doi.org/10.1021/acsmedchemlett.1c00556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang C, Garlick S, Zloh M (2021) Deep learning for novel antimicrobial peptide design. Biomolecules 11(3):471. https://doi.org/10.3390/biom11030471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang H, Saravanan KM, Wei Y et al (2023) Deep learning-based bioactive therapeutic peptide generation and screening. J Chem Inf Model 63(3):835–845. https://doi.org/10.1021/acs.jcim.2c01485

    Article  CAS  PubMed  Google Scholar 

  11. Sartor RC, Noshay J, Springer NM et al (2019) Identification of the expressome by machine learning on omics data. Proc Natl Acad Sci USA 116(36):18119–18125. https://doi.org/10.1073/pnas.1813645116

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  13. Svenson J, Molchanova N, Schroeder CI (2020) Antimicrobial peptide mimics for clinical use: does size matter? Front Immunol 13:915368. https://doi.org/10.3389/fimmu.2022.915368

    Article  CAS  Google Scholar 

  14. Li R, Wu J, He F et al (2023) Rational design, synthesis, antifungal evaluation and docking studies of antifungal peptide CGA-N12 analogues based on the target CtKRE9. Bioorg Chem 132:106355. https://doi.org/10.1016/j.bioorg.2023.106355

    Article  CAS  PubMed  Google Scholar 

  15. Veltri D, Kamath U, Shehu A (2018) Deep learning improves antimicrobial peptide recognition. Bioinformatics 34(16):2740–2747. https://doi.org/10.1093/bioinformatics/bty179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meher PK, Sahu TK, Saini V et al (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7(1):42362. https://doi.org/10.1038/srep42362

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Li C, Sutherland D, Hammond SA et al (2020) AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC Genomics 23(1):77. https://doi.org/10.1186/s12864-022-08310-4

    Article  Google Scholar 

  18. Huang J, Xu Y, Xue Y et al (2023) Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences. Nat Biomed Eng 7(6):797–810. https://doi.org/10.1038/s41551-022-00991-2

    Article  CAS  PubMed  Google Scholar 

  19. Das P, Sercu T, Wadhawan K et al (2021) Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat Biomed Eng 5(6):613–623. https://doi.org/10.1038/s41551-021-00689-x

    Article  CAS  PubMed  Google Scholar 

  20. Cao Q, Ge C, Wang X et al (2023) Designing antimicrobial peptides using deep learning and molecular dynamic simulations. Brief Bioinform 24(2):bbad058. https://doi.org/10.1093/bib/bbad058

    Article  CAS  PubMed  Google Scholar 

  21. Bagherian M, Sabeti E, Wang K et al (2021) Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform 22(1):247–269. https://doi.org/10.1093/bib/bbz157

    Article  PubMed  Google Scholar 

  22. Javeed A, Dallora A, Berglund J et al (2023) Machine learning for dementia prediction: a systematic review and future research directions. J Med Syst 47(1):17. https://doi.org/10.1007/s10916-023-01906-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rustam F, Reshi AA, Mehmood A et al (2020) COVID-19 future forecasting using supervised machine learning models. IEEE Access 8:101489–101499. https://doi.org/10.1109/access.2020.2997311

    Article  Google Scholar 

  24. Uddin S, Khan A, Hossain ME et al (2019) Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 19(1):281. https://doi.org/10.1186/s12911-019-1004-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Topaz M, Murga L, Gaddis KM et al (2019) Mining fall-related information in clinical notes: comparison of rule-based and novel word embedding-based machine learning approaches. J Biomed Inform 90:103103. https://doi.org/10.1016/j.jbi.2019.103103

    Article  PubMed  Google Scholar 

  26. Bui H-L, Tran Q-C (2021) A new approach for tuning control rule based on hedge algebras theory and application in structural vibration control. J Vib Control 27(23–24):2686–2700. https://doi.org/10.1177/1077546320964307

    Article  Google Scholar 

  27. Dandea V, Grigoras G (2023) Expert system integrating rule-based reasoning to voltage control in photovoltaic-systems-rich low voltage electric distribution networks: a review and results of a case study. Appl Sci 13(10):6158. https://doi.org/10.3390/app13106158

    Article  CAS  Google Scholar 

  28. Abdel Monaim SAH, Jad YE, El-Faham A et al (2018) Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorgan Med Chem 26(10):2788–2796. https://doi.org/10.1016/j.bmc.2017.09.040

    Article  CAS  Google Scholar 

  29. Porto WF, Irazazabal L, Alves ESF et al (2018) In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun 9(1):1490. https://doi.org/10.1038/s41467-018-03746-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Henan Province (2323000421165); the Innovative Funds Plan of Henan University of Technology (2020ZKCJ23).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Xu, Degang Xu or Ruifang Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, K., Xu, W., Ren, S. et al. Machine Learning Accelerates De Novo Design of Antimicrobial Peptides. Interdiscip Sci Comput Life Sci (2024). https://doi.org/10.1007/s12539-024-00612-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12539-024-00612-3

Keywords

Navigation