Skip to main content
Log in

Balancing Exploration–Exploitation of Multi-verse Optimizer for Parameter Extraction on Photovoltaic Models

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Extracting photovoltaic (PV) model parameters based on the measured voltage and current information is crucial in the simulation and management of PV systems. To accurately and reliably extract the unknown parameters of different PV models, this paper proposes an improved multi-verse optimizer that integrates an iterative chaos map and the Nelder–Mead simplex method, INMVO. Quantitative experiments verified that the proposed INMVO fueled by both mechanisms has more affluent populations and a more reasonable balance between exploration and exploitation. Further, to verify the feasibility and competitiveness of the proposal, this paper employed INMVO to extract the unknown parameters on single-diode, double-diode, three-diode, and PV module four well-known PV models, and the high-performance techniques are selected for comparison. In addition, the Wilcoxon signed-rank and Friedman tests were employed to test the experimental results statistically. Various evaluation metrics, such as root means square error, relative error, absolute error, and statistical test, demonstrate that the proposed INMVO works effectively and accurately to extract the unknown parameters on different PV models compared to other techniques. In addition, the capability of INMVO to stably and accurately extract unknown parameters was also verified on three commercial PV modules under different irradiance and temperatures. In conclusion, the proposal in this paper can be implemented as an advanced and reliable tool for extracting the unknown parameters of different PV models. Note that the source code of INMVO is available at https://github.com/woniuzuioupao/INMVO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of Data and Materials

The data involved in this study are all public data, which can be downloaded through public channels.

References

  1. Muhsen, D. H., Ghazali, A. B., Khatib, T., & Abed, I. A. (2015). Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm. Energy Conversion and Management, 105, 552–561. https://doi.org/10.1016/j.enconman.2015.08.023

    Article  Google Scholar 

  2. Chauhan, A., & Saini, R. P. (2014). A review on integrated renewable energy system based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renewable and Sustainable Energy Reviews, 38, 99–120. https://doi.org/10.1016/j.rser.2014.05.079

    Article  Google Scholar 

  3. Yu, L., Li, Y. P., Huang, G. H., & An, C. J. (2017). A robust flexible-probabilistic programming method for planning municipal energy system with considering peak-electricity price and electric vehicle. Energy Conversion and Management, 137, 97–112. https://doi.org/10.1016/j.enconman.2017.01.028

    Article  Google Scholar 

  4. Ridha, H. M., Gomes, C., Hizam, H., Ahmadipour, M., Heidari, A. A., & Chen, H. L. (2021). Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review. Renewable and Sustainable Energy Reviews, 135, 110202. https://doi.org/10.1016/j.rser.2020.110202

    Article  Google Scholar 

  5. Ameur, A., Berrada, A., Loudiyi, K., & Aggour, M. (2020). Forecast modeling and performance assessment of solar PV systems. Journal of Cleaner Production, 267, 122167. https://doi.org/10.1016/j.jclepro.2020.122167

    Article  Google Scholar 

  6. Nassar-Eddine, I., Obbadi, A., Errami, Y., El Fajri, A., & Agunaou, M. (2016). Parameter estimation of photovoltaic modules using iterative method and the lambert w function: A comparative study. Energy Conversion and Management, 119, 37–48. https://doi.org/10.1016/j.enconman.2016.04.030

    Article  Google Scholar 

  7. Parida, B., Iniyan, S., & Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 15(3), 1625–1636. https://doi.org/10.1016/j.rser.2010.11.032

    Article  Google Scholar 

  8. Kermadi, M., & Berkouk, E. M. (2017). Artificial intelligence-based maximum power point tracking controllers for photovoltaic systems: Comparative study. Renewable and Sustainable Energy Reviews, 69, 369–386. https://doi.org/10.1016/j.rser.2016.11.125

    Article  Google Scholar 

  9. Chen, Z. C., Wu, L. J., Lin, P. J., Wu, Y., & Cheng, S. Y. (2016). Parameters identification of photovoltaic models using hybrid adaptive Nelder–Mead simplex algorithm based on eagle strategy. Applied Energy, 182, 47–57. https://doi.org/10.1016/j.apenergy.2016.08.083

    Article  Google Scholar 

  10. Pandey, A. K., Tyagi, V. V., Selvaraj, J. A. L., Rahim, N. A., & Tyagi, S. K. (2016). Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renewable and Sustainable Energy Reviews, 53, 859–884. https://doi.org/10.1016/j.rser.2015.09.043

    Article  Google Scholar 

  11. Eltawil, M. A., & Zhao, Z. M. (2013). Mppt techniques for photovoltaic applications. Renewable and Sustainable Energy Reviews, 25, 793–813. https://doi.org/10.1016/j.rser.2013.05.022

    Article  Google Scholar 

  12. Jordehi, A. R. (2016). Parameter estimation of solar photovoltaic (PV) cells: A review. Renewable and Sustainable Energy Reviews, 61, 354–371. https://doi.org/10.1016/j.rser.2016.03.049

    Article  Google Scholar 

  13. Long, W., Cai, S. H., Jiao, J. J., Xu, M., & Wu, T. B. (2020). A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Conversion and Management, 203, 112243. https://doi.org/10.1016/j.enconman.2019.112243

    Article  Google Scholar 

  14. Chin, V. J., Salam, Z., & Ishaque, K. (2015). Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Applied Energy, 154, 500–519. https://doi.org/10.1016/j.apenergy.2015.05.035

    Article  Google Scholar 

  15. Easwarakhanthan, T., Bottin, J., Bouhouch, I. B., & Boutrit, C. (1986). Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. International Journal of Solar Energy, 4, 1–12.

    Article  Google Scholar 

  16. Merchaoui, M., Sakly, A., & Mimouni, M. F. (2018). Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Conversion and Management, 175, 151–163. https://doi.org/10.1016/j.enconman.2018.08.081

    Article  Google Scholar 

  17. Yu, K. J., Liang, J. J., Qu, B. Y., Chen, X., & Wang, H. S. (2017). Parameters identification of photovoltaic models using an improved jaya optimization algorithm. Energy Conversion and Management, 150, 742–753. https://doi.org/10.1016/j.enconman.2017.08.063

    Article  Google Scholar 

  18. Gottschalg, R., Rommel, M., Infield, D., & Kearney, M. J. (1999). The influence of the measurement environment on the accuracy of the extraction of the physical parameters of solar cells. Measurement Science and Technology, 10, 796–804.

    Article  Google Scholar 

  19. Chen, H. L., Jiao, S., Heidari, A. A., Wang, M. J., Chen, X., & Zhao, X. H. (2019). An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Conversion and Management, 195, 927–942. https://doi.org/10.1016/j.enconman.2019.05.057

    Article  Google Scholar 

  20. Liu, Y., Chong, G. S., Heidari, A. A., Chen, H. L., Liang, G. X., Ye, X. J., Cai, Z. N., & Wang, M. J. (2020). Horizontal and vertical crossover of harris hawk optimizer with Nelder–Mead simplex for parameter estimation of photovoltaic models. Energy Conversion and Management, 223, 113211. https://doi.org/10.1016/j.enconman.2020.113211

    Article  Google Scholar 

  21. Weng, X. M., Heidari, A. A., Liang, G. X., Chen, H. L., Ma, X. S., Mafarja, M., & Turabieh, H. (2021). Laplacian Nelder–Mead spherical evolution for parameter estimation of photovoltaic models. Energy Conversion and Management, 243, 114223. https://doi.org/10.1016/j.enconman.2021.114223

    Article  Google Scholar 

  22. Ahmadianfar, I., Gong, W. Y., Heidari, A. A., Golilarz, N. A., Samadi-Koucheksaraee, A., & Chen, H. L. (2021). Gradient-based optimization with ranking mechanisms for parameter identification of photovoltaic systems. Energy Reports, 7, 3979–3997. https://doi.org/10.1016/j.egyr.2021.06.064

    Article  Google Scholar 

  23. Niu, Q., Zhang, L. T., & Li, K. (2014). A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells. Energy Conversion and Management, 86, 1173–1185. https://doi.org/10.1016/j.enconman.2014.06.026

    Article  Google Scholar 

  24. Duan, Y. Z., Zhao, Y. Y., & Hu, J. P. (2023). An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis. Sustainable Energy, Grids and Networks, 34, 101004. https://doi.org/10.1016/j.segan.2023.101004

    Article  Google Scholar 

  25. Cao, B., Zhang, W. Z., Wang, X. S., Zhao, J. W., Gu, Y., & Zhang, Y. (2021). A memetic algorithm based on two_arch2 for multi-depot heterogeneous-vehicle capacitated arc routing problem. Swarm and Evolutionary Computation, 63, 100864. https://doi.org/10.1016/j.swevo.2021.100864

    Article  Google Scholar 

  26. Zhang, K., Wang, Z. Z., Chen, G. D., Zhang, L. M., Yang, Y. F., Yao, C. J., Wang, J., & Yao, J. (2022). Training effective deep reinforcement learning agents for real-time life-cycle production optimization. Journal of Petroleum Science and Engineering, 208, 109766. https://doi.org/10.1016/j.petrol.2021.109766

    Article  Google Scholar 

  27. Zhang, L., Sun, C. L., Cai, G. W., & Koh, L. H. (2023). Charging and discharging optimization strategy for electric vehicles considering elasticity demand response. eTransportation, 18, 100262. https://doi.org/10.1016/j.etran.2023.100262

    Article  Google Scholar 

  28. Cao, B., Gu, Y., Lv, Z. H., Yang, S., Zhao, J. W., & Li, Y. J. (2021). Rfid reader anticollision based on distributed parallel particle swarm optimization. IEEE Internet of Things Journal, 8(5), 3099–3107. https://doi.org/10.1109/JIOT.2020.3033473

    Article  Google Scholar 

  29. Cao, B., Zhao, J. W., Gu, Y., Ling, Y. B., & Ma, X. L. (2020). Applying graph-based differential grouping for multiobjective large-scale optimization. Swarm and Evolutionary Computation, 53, 100626. https://doi.org/10.1016/j.swevo.2019.100626

    Article  Google Scholar 

  30. Cao, B., Zhao, J. W., Yang, P., Gu, Y., Muhammad, K., Rodrigues, J. J. P. C., & Albuquerque, V. H. C. D. (2020). Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Transactions on Industrial Informatics, 16(5), 3597–3605. https://doi.org/10.1109/TII.2019.2952565

    Article  Google Scholar 

  31. Cao, B., Zhao, J. W., Gu, Y., Fan, S. S., & Yang, P. (2020). Security-aware industrial wireless sensor network deployment optimization. IEEE Transactions on Industrial Informatics, 16(8), 5309–5316. https://doi.org/10.1109/TII.2019.2961340

    Article  Google Scholar 

  32. Cao, B., Fan, S. S., Zhao, J. W., Tian, S., Zheng, Z. H., Yan, Y. L., & Yang, P. (2021). Large-scale many-objective deployment optimization of edge servers. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3841–3849. https://doi.org/10.1109/TITS.2021.3059455

    Article  Google Scholar 

  33. Cao, B., Zhao, J. W., Lv, Z. H., & Yang, P. (2021). Diversified personalized recommendation optimization based on mobile data. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2133–2139. https://doi.org/10.1109/TITS.2020.3040909

    Article  Google Scholar 

  34. Gholizadeh, S., Danesh, M., & Gheyratmand, C. (2020). A new newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames. Computers and Structures, 234, 106250. https://doi.org/10.1016/j.compstruc.2020.106250

    Article  Google Scholar 

  35. Gholizadeh, S., Razavi, N., & Shojaei, E. (2019). Improved black hole and multiverse algorithms for discrete sizing optimization of planar structures. Engineering Optimization, 51(10), 1645–1667. https://doi.org/10.1080/0305215X.2018.1540697

    Article  MathSciNet  Google Scholar 

  36. Yang, Y. T., Chen, H. L., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864. https://doi.org/10.1016/j.eswa.2021.114864

    Article  Google Scholar 

  37. Chen, H. L., Li, C. Y., Mafarja, M., Heidari, A. A., Chen, Y., & Cai, Z. N. (2023). Slime mould algorithm: A comprehensive review of recent variants and applications. International Journal of Systems Science, 54(1), 204–235. https://doi.org/10.1080/00207721.2022.2153635

    Article  Google Scholar 

  38. Li, S. M., Chen, H. L., Wang, M. J., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  39. Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H. L., & Gandomi, A. H. (2022). Info: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195, 116516. https://doi.org/10.1016/j.eswa.2022.116516

    Article  Google Scholar 

  40. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X. F., & Chen, H. L. (2021). Run beyond the metaphor: An efficient optimization algorithm based on runge kutta method. Expert Systems with Applications, 181, 115079. https://doi.org/10.1016/j.eswa.2021.115079

    Article  Google Scholar 

  41. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. L. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems—The International Journal of Escience, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  42. Tu, J. Z., Chen, H. L., Wang, M. J., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18(3), 674–710. https://doi.org/10.1007/s42235-021-0050-y

    Article  Google Scholar 

  43. Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  44. Su, H., Zhao, D., Heidari, A. A., Liu, L., Zhang, X. Q., Mafarja, M., & Chen, H. L. (2023). Rime: A physics-based optimization. Neurocomputing, 532, 183–214. https://doi.org/10.1016/j.neucom.2023.02.010

    Article  Google Scholar 

  45. Chen, J. C., Cai, Z. N., Chen, H. L., Chen, X. W., Escorcia-Gutierrez, J., Mansour, R. F., & Ragab, M. (2023). Renal pathology images segmentation based on improved cuckoo search with diffusion mechanism and adaptive beta-hill climbing. Journal of Bionic Engineering, 20(5), 2240–2275. https://doi.org/10.1007/s42235-023-00365-7

    Article  Google Scholar 

  46. Hu, H. Y., Shan, W. F., Chen, J., Xing, L. L., Heidari, A. A., Chen, H. L., He, X. X., & Wang, M. F. (2023). Dynamic individual selection and crossover boosted forensic-based investigation algorithm for global optimization and feature selection. Journal of Bionic Engineering, 20(5), 2416–2442. https://doi.org/10.1007/s42235-023-00367-5

    Article  Google Scholar 

  47. Sharma, S., Chakraborty, S., Saha, A. K., Nama, S., & Sahoo, S. K. (2022). Mlboa: A modified butterfly optimization algorithm with lagrange interpolation for global optimization. Journal of Bionic Engineering, 19(4), 1161–1176. https://doi.org/10.1007/s42235-022-00175-3

    Article  Google Scholar 

  48. Sahoo, S. K., & Saha, A. K. (2022). A hybrid moth flame optimization algorithm for global optimization. Journal of Bionic Engineering, 19(5), 1522–1543. https://doi.org/10.1007/s42235-022-00207-y

    Article  Google Scholar 

  49. Kourou, K., Manikis, G., Poikonen-Saksela, P., Mazzocco, K., Pat-Horenczyk, R., Sousa, B., Oliveira-Maia, A. J., Mattson, J., Roziner, I., Pettini, G., Kondylakis, H., Marias, K., Karademas, E., Simos, P., & Fotiadis, D. I. (2021). A machine learning-based pipeline for modeling medical, socio-demographic, lifestyle and self-reported psychological traits as predictors of mental health outcomes after breast cancer diagnosis: An initial effort to define resilience effects. Computers in Biology and Medicine, 131, 104266. https://doi.org/10.1016/j.compbiomed.2021.104266

    Article  Google Scholar 

  50. Faruqui, N., Yousuf, M. A., Whaiduzzaman, M., Azad, A. K. M., Barros, A., & Moni, M. A. (2021). Lungnet: A hybrid deep-cnn model for lung cancer diagnosis using ct and wearable sensor-based medical iot data. Computers in Biology and Medicine, 139, 104961. https://doi.org/10.1016/j.compbiomed.2021.104961

    Article  Google Scholar 

  51. Painuli, D., Bhardwaj, S., & Köse, U. (2022). Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review. Computers in Biology and Medicine, 146, 105580. https://doi.org/10.1016/j.compbiomed.2022.105580

    Article  Google Scholar 

  52. Hržić, F., Tschauner, S., Sorantin, E., & Štajduhar, I. (2021). Xaom: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis. Computers in Biology and Medicine, 132, 104300. https://doi.org/10.1016/j.compbiomed.2021.104300

    Article  Google Scholar 

  53. Goel, K., Sindhgatta, R., Kalra, S., Goel, R., & Mutreja, P. (2022). The effect of machine learning explanations on user trust for automated diagnosis of COVID-19. Computers in Biology and Medicine, 146, 105587. https://doi.org/10.1016/j.compbiomed.2022.105587

    Article  Google Scholar 

  54. Nabavi, S., Ejmalian, A., Moghaddam, M. E., Abin, A. A., Frangi, A. F., Mohammadi, M., & Rad, H. S. (2021). Medical imaging and computational image analysis in COVID-19 diagnosis: A review. Computers in Biology and Medicine, 135, 104605. https://doi.org/10.1016/j.compbiomed.2021.104605

    Article  Google Scholar 

  55. Jordehi, A. R. (2016). Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules. Energy Conversion and Management, 129, 262–274. https://doi.org/10.1016/j.enconman.2016.09.085

    Article  Google Scholar 

  56. Xiong, G. J., Zhang, J., Shi, D. Y., & He, Y. (2018). Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Conversion and Management, 174, 388–405. https://doi.org/10.1016/j.enconman.2018.08.053

    Article  Google Scholar 

  57. Gao, X. K., Cui, Y., Hu, J. J., Xu, G. Y., Wang, Z. F., Qu, J. H., & Wang, H. (2018). Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Conversion and Management, 157, 460–479. https://doi.org/10.1016/j.enconman.2017.12.033

    Article  Google Scholar 

  58. Li, S. J., Gong, W. Y., Yan, X. S., Hu, C. Y., Bai, D. Y., Wang, L., & Gao, L. (2019). Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Conversion and Management, 186, 293–305. https://doi.org/10.1016/j.enconman.2019.02.048

    Article  Google Scholar 

  59. Abd Elaziz, M., & Oliva, D. (2018). Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Conversion and Management, 171, 1843–1859. https://doi.org/10.1016/j.enconman.2018.05.062

    Article  Google Scholar 

  60. Guo, L., Meng, Z., Sun, Y. Z., & Wang, L. B. (2016). Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Conversion and Management, 108, 520–528. https://doi.org/10.1016/j.enconman.2015.11.041

    Article  Google Scholar 

  61. Ridha, H. M., Heidari, A. A., Wang, M. J., & Chen, H. L. (2020). Boosted mutation-based harris hawks optimizer for parameters identification of single-diode solar cell models. Energy Conversion and Management, 209, 112660. https://doi.org/10.1016/j.enconman.2020.112660

    Article  Google Scholar 

  62. Xu, S. H., & Wang, Y. (2017). Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Conversion and Management, 144, 53–68. https://doi.org/10.1016/j.enconman.2017.04.042

    Article  Google Scholar 

  63. Ismail, M. S., Moghavvemi, M., & Mahlia, T. M. I. (2013). Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Conversion and Management, 73, 10–25. https://doi.org/10.1016/j.enconman.2013.03.033

    Article  Google Scholar 

  64. Alam, D. F., Yousri, D. A., & Eteiba, M. B. (2015). Flower pollination algorithm based solar PV parameter estimation. Energy Conversion and Management, 101, 410–422. https://doi.org/10.1016/j.enconman.2015.05.074

    Article  Google Scholar 

  65. Abbassi, R., Abbassi, A., Heidari, A. A., & Mirjalili, S. (2019). An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Conversion and Management, 179, 362–372. https://doi.org/10.1016/j.enconman.2018.10.069

    Article  Google Scholar 

  66. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  67. Gholizadeh, S., & Milany, A. (2018). An improved fireworks algorithm for discrete sizing optimization of steel skeletal structures. Engineering Optimization, 50(11), 1829–1849. https://doi.org/10.1080/0305215X.2017.1417402

    Article  MathSciNet  Google Scholar 

  68. Bentouati, B., Saliha, C., Trivedi, I., & Jangir, P. (2016). A solution to the optimal power flow using multi-verse optimizer. Journal of Electrical Systems, 12, 1.

    Google Scholar 

  69. Shaheen, A. M., & El-Sehiemy, R. A. (2019). Application of multi-verse optimizer for transmission network expansion planning in power systems. In 2019 International Conference on Innovative Trends in Computer Engineering (ITCE).

  70. Ewees, A. A., Abd El Aziz, M., & Hassanien, A. E. (2019). Chaotic multi-verse optimizer-based feature selection. Neural Computing & Applications, 31(4), 991–1006. https://doi.org/10.1007/s00521-017-3131-4

    Article  Google Scholar 

  71. Tabrizchi, H., Javidi, M. M., & Amirzadeh, V. (2021). Estimates of residential building energy consumption using a multi-verse optimizer-based support vector machine with k-fold cross-validation. Evolving Systems, 12(3), 755–767. https://doi.org/10.1007/s12530-019-09283-8

    Article  Google Scholar 

  72. Kandhway, P., & Bhandari, A. K. (2019). Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer. Multimedia Tools and Applications, 78(16), 22613–22641. https://doi.org/10.1007/s11042-019-7506-7

    Article  Google Scholar 

  73. Hu, C., Li, Z., Zhou, T., Zhu, A. J., & Xu, C. P. (2016). A multi-verse optimizer with levy flights for numerical optimization and its application in test scheduling for network-on-chip. PLoS ONE. https://doi.org/10.1371/journal.pone.0167341

    Article  Google Scholar 

  74. Ali, E. E., El-Hameed, M. A., El-Fergany, A. A., & El-Arini, M. M. (2016). Parameter extraction of photovoltaic generating units using multi-verse optimizer. Sustainable Energy Technologies and Assessments, 17, 68–76. https://doi.org/10.1016/j.seta.2016.08.004

    Article  Google Scholar 

  75. Li, L. L., Wen, S. Y., Tseng, M. L., & Wang, C. S. (2019). Renewable energy prediction: A novel short-term prediction model of photovoltaic output power. Journal of Cleaner Production, 228, 359–375. https://doi.org/10.1016/j.jclepro.2019.04.331

    Article  Google Scholar 

  76. Ali, H. H., Kassem, A. M., Al-Dhaifallah, M., & Fathy, A. (2020). Multi-verse optimizer for model predictive load frequency control of hybrid multi-interconnected plants comprising renewable energy. IEEE Access, 8, 114623–114642. https://doi.org/10.1109/ACCESS.2020.3004299

    Article  Google Scholar 

  77. Talaat, M., Said, T., Essa, M. A., & Hatata, A. Y. (2022). Integrated mffnn-mvo approach for PV solar power forecasting considering thermal effects and environmental conditions. International Journal of Electrical Power and Energy Systems, 135, 107570. https://doi.org/10.1016/j.ijepes.2021.107570

    Article  Google Scholar 

  78. Zhang, H. L., Heidari, A. A., Wang, M. J., Zhang, L. J., Chen, H. L., & Li, C. Y. (2020). Orthogonal Nelder–Mead moth flame method for parameters identification of photovoltaic modules. Energy Conversion and Management, 211, 112764. https://doi.org/10.1016/j.enconman.2020.112764

    Article  Google Scholar 

  79. Gong, W. Y., & Cai, Z. H. (2013). Parameter extraction of solar cell models using repaired adaptive differential evolution. Solar Energy, 94, 209–220. https://doi.org/10.1016/j.solener.2013.05.007

    Article  Google Scholar 

  80. Khoury, J., Ovrut, B. A., Seiberg, N., Steinhardt, P. J., & Turok, N. (2002). From big crunch to big bang. Physical Review D, 65, 086007.

    Article  Google Scholar 

  81. Barrow, J., & Davies, P. C., Jr. (2004). Science and ultimate reality: Quantum theory, cosmology and complexity. American Journal of Physics. https://doi.org/10.1119/1.2167767

    Article  Google Scholar 

  82. Eardley, D. M. (1974). Death of white holes in the early universe. Physical Review Letters, 33(7), 442–444. https://doi.org/10.1103/PhysRevLett.33.442

    Article  Google Scholar 

  83. Morris, M. S., & Thorne, K. S. (1988). Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics, 56, 5.

    Article  MathSciNet  Google Scholar 

  84. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7, 308–313.

    Article  MathSciNet  Google Scholar 

  85. Maehara, N., & Shimoda, Y. (2013). Application of the genetic algorithm and downhill simplex methods (nelder–mead methods) in the search for the optimum chiller configuration. Applied Thermal Engineering, 61(2), 433–442. https://doi.org/10.1016/j.applthermaleng.2013.08.021

    Article  Google Scholar 

  86. Zhou, Y. Q., Zhou, Y. X., Luo, Q. F., & Abdel-Basset, M. (2017). A simplex method-based social spider optimization algorithm for clustering analysis. Engineering Applications of Artificial Intelligence, 64, 67–82. https://doi.org/10.1016/j.engappai.2017.06.004

    Article  Google Scholar 

  87. Fan, S.-K.S., & Zahara, E. (2007). A hybrid simplex search and particle swarm optimization for unconstrained optimization. European Journal of Operational Research, 181(2), 527–548. https://doi.org/10.1016/j.ejor.2006.06.034

    Article  MathSciNet  Google Scholar 

  88. Liu, Y., Heidari, A. A., Ye, X. J., Liang, G. X., Chen, H. L., & He, C. T. (2021). Boosting slime mould algorithm for parameter identification of photovoltaic models. Energy, 234, 121164. https://doi.org/10.1016/j.energy.2021.121164

    Article  Google Scholar 

  89. Aljarah, I., Mafarja, M., Heidari, A. A., Faris, H., & Mirjalili, S. (2020). Multi-verse optimizer: Theory, literature review, and application in data clustering, in Nature-inspired optimizers: Theories, literature reviews and applications (pp. 123–141). Springer.

    Google Scholar 

  90. Abualigah, L. (2020). Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Computing and Applications, 32(16), 12381–12401. https://doi.org/10.1007/s00521-020-04839-1

    Article  Google Scholar 

  91. Askarzadeh, A., & Rezazadeh, A. (2013). Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Applied Energy, 102, 943–949. https://doi.org/10.1016/j.apenergy.2012.09.052

    Article  Google Scholar 

  92. Chen, X., Yu, K. J., Du, W. L., Zhao, W. X., & Liu, G. H. (2016). Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy, 99, 170–180. https://doi.org/10.1016/j.energy.2016.01.052

    Article  Google Scholar 

  93. Yu, K. J., Liang, J. J., Qu, B. Y., Cheng, Z. P., & Wang, H. S. (2018). Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Applied Energy, 226, 408–422. https://doi.org/10.1016/j.apenergy.2018.06.010

    Article  Google Scholar 

  94. Chen, X., Li, K. J., Xu, B., & Yang, Z. L. (2020). Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem. Knowledge-Based Systems, 208, 106463. https://doi.org/10.1016/j.knosys.2020.106463

    Article  Google Scholar 

  95. Zhou, W., Wang, P. J., Heidari, A. A., Zhao, X. H., Turabieh, H., & Chen, H. L. (2021). Random learning gradient based optimization for efficient design of photovoltaic models. Energy Conversion and Management, 230, 113751. https://doi.org/10.1016/j.enconman.2020.113751

    Article  Google Scholar 

  96. Nenavath, H., & Jatoth, R. K. (2018). Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Applied Soft Computing, 62, 1019–1043. https://doi.org/10.1016/j.asoc.2017.09.039

    Article  Google Scholar 

  97. Chou, J.-S., & Nguyen, N.-M. (2020). Fbi inspired meta-optimization. Applied Soft Computing, 93, 106339. https://doi.org/10.1016/j.asoc.2020.106339

    Article  Google Scholar 

  98. Nunes, H. G. G., Pombo, J. A. N., Bento, P. M. R., Mariano, S. J. P. S., & Calado, M. R. A. (2019). Collaborative swarm intelligence to estimate PV parameters. Energy Conversion and Management, 185, 866–890. https://doi.org/10.1016/j.enconman.2019.02.003

    Article  Google Scholar 

  99. Yang, B., Wang, J. B., Zhang, X. S., Yu, T., Yao, W., Shu, H. C., Zeng, F., & Sun, L. M. (2020). Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification. Energy Conversion and Management, 208, 112595. https://doi.org/10.1016/j.enconman.2020.112595

    Article  Google Scholar 

  100. Song, S. M., Wang, P. J., Heidari, A. A., Wang, M. J., Zhao, X. H., Chen, H. L., He, W. M., & Xu, S. L. (2021). Dimension decided harris hawks optimization with gaussian mutation: Balance analysis and diversity patterns. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2020.106425

    Article  Google Scholar 

  101. Han, Y., Chen, W. B., Heidari, A. A., Chen, H. L., & Zhang, X. (2023). A solution to the stagnation of multi-verse optimization: An efficient method for breast cancer pathologic images segmentation. Biomedical Signal Processing and Control, 86, 105208. https://doi.org/10.1016/j.bspc.2023.105208

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of Zhejiang Province (LY21F020001, LZ22F020005), National Natural Science Foundation of China (62076185), Science and Technology Plan Project of Wenzhou, China (ZG2020026). We also acknowledge the respected editor and reviewers' efforts to enhance the quality of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weibin Chen, Huiling Chen or Xin Zhang.

Ethics declarations

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Chen, W., Heidari, A.A. et al. Balancing Exploration–Exploitation of Multi-verse Optimizer for Parameter Extraction on Photovoltaic Models. J Bionic Eng 21, 1022–1054 (2024). https://doi.org/10.1007/s42235-024-00479-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-024-00479-6

Keywords

Navigation