Skip to main content
Log in

Controlling Tendons to Modulate Stiffness of a Planar-to-Spatial Tendon-Driven Continuum Manipulator Under External Uncertain Forces

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Continuum manipulators (CM) are soft and flexible manipulators with large numbers of degrees of freedom and can perform complex tasks in an unstructured environment. However, their deformability and compliance can deviate distal tip under uncertain external interactions. To address this challenge, a novel tension-based control scheme has been proposed to modulate the stiffness of a tendon-driven CM, reducing the tip position errors caused by uncertain external forces. To minimize the tip position error, a virtual spring is positioned between the deviated and the desired tip positions. The proposed algorithm corrects the manipulator deviated tip position, improving tension distribution and stiffness profile, resulting in higher stiffness and better performance. The corresponding task space stiffness and condition numbers are also computed under different cases, indicating the effectiveness of the tension control scheme in modulating the manipulator's stiffness. Experimental validation conducted on an in-house developed prototype confirms the practical feasibility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kolachalama, S., & Lakshmanan, S. (2020). Continuum robots for manipulation applications: A survey. Journal of Robotics, 2020, 4187048.

    Article  Google Scholar 

  2. Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(467–475), 7553.

    Google Scholar 

  3. Wang, X. V., & Wang, L. (2021). A literature survey of the robotic technologies during the COVID-19 pandemic. Journal of Manufacturing Systems, 60, 823–836.

    Article  Google Scholar 

  4. Schiavi, R., Grioli, G., Sen, S., & Bicchi, A. (2008). VSA-II: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. Proceeding of international conference on robotics and automation (pp. 2171–2176). Pasadena, CA, USA

  5. Xu, K., & Simaan, N. (2008). An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Transactions on Robotics, 24(3), 576–587.

    Article  Google Scholar 

  6. Huang, S., Meng, D., She, Y., Wang, X., Liang, B., & Yuan, B. (2018). Statics of continuum space manipulators with nonconstant curvature via pseudorigid-body 3R model. IEEE Access, 6, 70854–70865.

    Article  Google Scholar 

  7. Yuan, H., Zhou, L., & Xu, W. (2019). A comprehensive static model of cable-driven multi-section continuum robots considering friction effect. Mechanism and Machine Theory, 135, 130–149.

    Article  Google Scholar 

  8. Mahvash, M., & Dupont, P. E. (2011). Stiffness control of surgical continuum nanipulators. IEEE Transactions on Robotics, 27(2), 334–345.

    Article  Google Scholar 

  9. Manti, M., Cacucciolo, V., & Cianchetti, M. (2016). Stiffening in soft robotics: A review of the state of the art. IEEE Robotics and Automation Magazine, 23(3), 93–106.

    Article  Google Scholar 

  10. Pettersson, A., Davis, S., Gray, J. O., Dodd, T. J., & Ohlsson, T. (2010). Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. Journal of Food Engineering, 98(3), 332–338.

    Article  Google Scholar 

  11. Li, Z., & Du, R. (2014). Expanding workspace of underactuated flexible manipulators by actively deploying constraints. In: Proceeding of IEEE international conference on robotics and automation (pp. 2901–2906). Hong Kong, China

  12. Wang, L., Yang, Y., Yonghua, C., Carmel, M., Fumiya, I., Erin, A., & Pei, Q. (2018). Controllable and reversible tuning of material rigidity for robot applications. Materials Today, 21(5), 563–576.

    Article  Google Scholar 

  13. Majidi, C., & Wood, R. J. (2010). Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Applied Physics Letters, 97(16), 2008–2011.

    Article  Google Scholar 

  14. Sadeghi, A., Beccai, L., & Mazzolai, B. (2021). Innovative soft robots based on electro-rheological fluids. In: Proceeding of IEEE International Conference on Intelligent Robots and Systems (pp. 4237–4242). Vilamoura-Algarve, Portugal

  15. Shan, W., Lu, T., & Majidi, C. (2013). Soft-matter composites with electrically tunable elastic rigidity. Smart Materials and Structures, 22(8), 085005.

    Article  Google Scholar 

  16. Cheng, N. G., Lobovsky, M. B., Keating, S. J., Setapen, A. M., Gero, K. I., Hosoi, A. E., & Iagnemma, K. D. (2012). Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. Proceedings of IEEE International Conference on Robotics and Automation (pp. 4328–4333). Saint Paul, Minnesota, USA

  17. Kim, Y. J., Cheng, S., Kim, S., & Iagnemma, K. (2012). Design of a tubular snake-like manipulator with stiffening capability by layer jamming. Proceedings of IEEE International Conference on Intelligent Robots and Systems (pp. 4251–4256). Vilamoura, Algarve, Portugal

  18. Jiang, A., Xynogalas, G., Dasgupta, P., Althoefer, K., & Nanayakkara, T. (2012). Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. Proceedings of IEEE International Conference on Intelligent Robots and Systems (pp. 2922–2927). Vilamoura, Algarve, Portugal

  19. Yang, C., Geng, S., Walker, I., Branson, D. T., Liu, J., Dai, J. S., & Kang, R. (2020). Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness. International Journal of Robotics Research, 39(14), 1620–1634.

    Article  Google Scholar 

  20. Jeon, H., Le, Q. N., Jeong, S., Jang, S., Jung, H., Chang, H., Pandya, H. J., & Kim, Y. (2022). Towards a snake-like flexible robot with variable stiffness using an SMA spring-based friction change mechanism. IEEE Robotics and Automation Letters, 7(3), 6582–6589.

    Article  Google Scholar 

  21. Bishop, C., Russo, M., Dong, X., & Axinte, D. (2022). A novel underactuated continuum robot with shape memory alloy clutches. IEEE/ASME Transactions on Mechatronics, 27(6), 1–12.

    Article  Google Scholar 

  22. Swanstrom, L., Kizarek, R., Pasricha, P., Gross, S., Birkett, D., Park, P., Saadat, V., & Swain, P. (2005). Development of a new access device for transgastric surgery. Journal of Gastrointestinal Surgery, 9(8), 1129–1137.

    Article  Google Scholar 

  23. Kim, Y. J., Cheng, S., Kim, S., & Iagnemma, K. (2014). A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery. IEEE Transactions on Robotics, 30(2), 382–395.

    Article  Google Scholar 

  24. Us, M. N., Meyer, M. P.,Us, M. N., & Davis, L. J. (2014). Adjustable stiffness dilatation catheter, US 9,649,473 B2.

  25. Conrad, B. L., Jung, J., Penning, R. S., & Zinn, M. R. (2013). Interleaved continuum-rigid manipulation: An augmented approach for robotic minimally-invasive flexible catheter-based procedures. Preceedings of IEEE International Conference on Robotics and Automation (pp. 718–724). Karlsruhe, Germany

  26. Xu, K., Fu, M., & Zhao, J. (2014). An experimental kinestatic comparison between continuum manipulators with structural variations. Proceedings of IEEE international conference on robotics and automation (pp. 3258–3264). Hong Kong, China

  27. Liu, Z., Jin, H., Liu, Y., & Zhao, J. (2022). An online stiffness estimation approach for variable stiffness actuators using lever mechanism. IEEE Robotics and Automation Letters, 7(3), 6709–6717.

    Article  Google Scholar 

  28. Mahvash, M., & Dupont, P. E. (2010). Stiffness control of a continuum manipulator in contact with a soft environment. Proceedings of IEEE International Conference on Intelligent Robots and Systems (pp. 863–870). Taipei, China

  29. Della, C., Katzschmann, R. K., Biechi, A., & Rus, D. (2018). Dynamic control of soft robots interacting with the environment. Proceedings of IEEE International Conference on Soft Robotics (pp. 46–53). Livorno, Italy

  30. Koehler, M., Okamura, A. M., & Duriez, C. (2019). Stiffness control of deformable robots using finite element modeling. IEEE Robotics and Automation Letters, 4(2), 469–476.

    Article  Google Scholar 

  31. Sadati, S. M., Naghibi, S. E., Shiva, A., Walker, I. D., Althoefer, K., & Nanayakkara, T. (2017). Mechanics of continuum manipulators, a comparative study of five methods with experiments. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Vol. 10454, pp. 686–702.

  32. He, B., Xu, S., & Wang, Z. (2018). Research on stiffness of multibackbone continuum robot based on screw theory and Euler–Bernoulli beam. Mathematical Problems in Engineering, 2018, 16.

    Article  Google Scholar 

  33. Gravagne, W. I., & Rahn, C. D. (2003). Large deflection dynamics and control for planar continuum robots. IEEE/ASME Transactions On Mechatronics, 8(2), 299–307.

    Article  Google Scholar 

  34. Escande, C., Merzouki, R., Pathak, P. M., & Coelen, V. (2012). Geometric modelling of multisection bionic manipulator: Experimental validation on RobotinoXT. Proceedings of IEEE International Conference on Robotics and Biomimetics (pp. 2006–2011). Guangzhou, China

  35. Escande, C., Chettibi, T., Merzouki, R., Coelen, V., & Pathak, P. M. (2015). Kinematic calibration of a multisection bionic manipulator. IEEE/ASME Transactions on Mechatronics, 20(2), 663–674.

    Article  Google Scholar 

  36. Li, Z., & Du, R. (2013). Design and analysis of a bio-inspired wire-driven multi-section flexible robot. International Journal of Advanced Robotic Systems, 10, 1–11.

    Article  Google Scholar 

  37. Bieze, T. M., Kruszewski, A., Carrez, B., & Duriez, C. (2020). Design, implementation and control of a deformable manipulator robot based on a compliant spine. International Journal of Robotics Research, 39(14), 1–16.

    Google Scholar 

  38. Saglia, J. A., Tsagarakis, N. G., Dai, J. S., & Caldwell, D. G. (2009). A high-performance redundantly actuated parallel mechanism for ankle rehabilitation. International Journal of Robotics Research, 28(9), 1216–1227.

    Article  Google Scholar 

  39. Zhang, X., Liu, Y., Branson, D. T., Yang, C., Dai, J. S., & Kang, R. (2022). Variable-gain control for continuum robots based on velocity sensitivity. Mechanism and Machine Theory, 168, 104618.

    Article  Google Scholar 

  40. Pachouri, V., & Pathak, P. M. (2023). Design and modeling of a planar-to-spatial tendon-driven continuum manipulator subjected to uncertain forces. Robotics and Autonomous Systems, 170, 104551.

    Article  Google Scholar 

  41. Riehl, N., Gouttefarde, M., Baradat, C., & Pierrot, F. (2010). On the determination of cable characteristics for large dimension cable-driven parallel mechanisms. In: Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, pp. 4709–4714.

  42. Zou, Y., Wu, X., Zhang, B., Zhang, Q., Zhang, A., & Qin, T. (2022). Stiffness analysis of parallel cable-driven upper limb rehabilitation robot. Micromachines, 13(2), 1–15.

    Article  Google Scholar 

  43. Zhang, S., Sun, Z., Lu, J., Li, L., Yu, C., & Cao, D. (2020). Spring effects on workspace and stiffness of a symmetrical cable-driven hybrid joint. Symmetry, 12(1), 1–20.

    Article  Google Scholar 

  44. Pachouri, V., & Pathak, P. M. (2021). Inverse kinematic model of a cable-driven continuum manipulator. Proceedings of Advances in Industrial Machines and Mechanisms (pp. 553–564). India

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushparaj Mani Pathak.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The elements of the structure matrix for a two-section planar to spatial TDCM are shown below:

$${A}_{11}={\widehat{e}}_{{A}_{2}{A}_{1}}\frac{\partial {}_{ }{}^{{P}_{1}}{A}_{2}}{\partial {\theta }_{1}};{{A}_{12}=\widehat{e}}_{{B}_{2}{B}_{1}}\frac{\partial {}_{ }{}^{{P}_{1}}{B}_{2}}{\partial {\theta }_{1}}$$
$${A}_{21}={\widehat{e}}_{{A}_{3}{A}_{2}}\frac{\partial {}_{ }{}^{{P}_{1}}{A}_{3}}{\partial {\theta }_{2}};{A}_{22}={\widehat{e}}_{{B}_{3}{B}_{2}}\frac{\partial {}_{ }{}^{{P}_{1}}{B}_{3}}{\partial {\theta }_{2}}$$
$${A}_{31}={\widehat{e}}_{{A}_{4}{A}_{3}}\frac{\partial {}_{ }{}^{{P}_{1}}{A}_{4}}{\partial {\theta }_{3}};{A}_{32}={\widehat{e}}_{{B}_{4}{B}_{3}}\frac{\partial {}_{ }{}^{{P}_{1}}{B}_{4}}{\partial {\theta }_{3}}$$
$${A}_{41}={\widehat{e}}_{{A}_{5}{A}_{4}}\frac{\partial {}_{ }{}^{{P}_{1}}{A}_{5}}{\partial {\theta }_{4}};{A}_{42}={\widehat{e}}_{{B}_{5}B}.\frac{\partial {}_{ }{}^{{P}_{1}}{B}_{5}}{\partial {\theta }_{4}}$$
$${A}_{43}=\left[{\widehat{e}}_{{C}_{6}{C}_{5}}\frac{\partial {}_{ }{}^{{P}_{1}}{C}_{6}}{\partial {\theta }_{4}}+\left({\widehat{e}}_{{C}_{5}{C}_{1}}-{\widehat{e}}_{{C}_{6}{C}_{5}}\right)\frac{\partial {}_{ }{}^{{P}_{1}}{C}_{5}}{\partial {\theta }_{4}}\right];{A}_{44}=\left[{\widehat{e}}_{{D}_{6}{D}_{5}}\frac{\partial {}_{ }{}^{{P}_{1}}{D}_{6}}{\partial {\theta }_{4}}+\left({\widehat{e}}_{{D}_{5}{D}_{1}}-{\widehat{e}}_{{D}_{6}{D}_{5}}\right)\frac{\partial {}_{ }{}^{{P}_{1}}{D}_{5}}{\partial {\theta }_{4}}\right]$$
$${A}_{53}={\widehat{e}}_{{C}_{6}{C}_{5}}\frac{\partial {}_{ }{}^{{P}_{1}}{C}_{6}}{\partial {\theta }_{5}};{A}_{54}={\widehat{e}}_{{D}_{6}{D}_{5}}\frac{\partial {}_{ }{}^{{P}_{1}}{D}_{6}}{\partial {\theta }_{5}}$$
$${A}_{63}={\widehat{e}}_{{C}_{7}{C}_{6}}\frac{\partial {}_{ }{}^{{P}_{1}}{C}_{7}}{\partial {\theta }_{6}};{A}_{64}={\widehat{e}}_{{D}_{7}{D}_{6}}\frac{\partial {}_{ }{}^{{P}_{1}}{D}_{7}}{\partial {\theta }_{6}}$$
$${A}_{73}={\widehat{e}}_{{C}_{8}{C}_{7}}\frac{\partial {}_{ }{}^{{P}_{1}}{C}_{8}}{\partial {\theta }_{7}};{A}_{74}={\widehat{e}}_{{D}_{8}{D}_{7}}\frac{\partial {}_{ }{}^{{P}_{1}}{D}_{8}}{\partial {\theta }_{7}}$$
$${A}_{83=}{\widehat{e}}_{{C}_{9}{C}_{8}}\frac{\partial {}_{ }{}^{{P}_{1}}{C}_{9}}{\partial {\theta }_{8}};{A}_{84}={\widehat{e}}_{{D}_{9}{D}_{8}}\frac{\partial {}_{ }{}^{{P}_{1}}{D}_{8}}{\partial {\theta }_{8}}$$
$${A}_{13}={A}_{14}={A}_{23}={A}_{24}={A}_{33}={A}_{34}={A}_{51}={A}_{52}={A}_{61}={A}_{62}={A}_{71}={A}_{72}={A}_{81}={A}_{82}=0$$

The expression of elastic energy of ith the segment is devised as follows: The elastic energy models the effect of flexibility devised using the slope of the backbone \(\left(\frac{\partial {W}_{i}\left({x}_{i},t\right)}{\partial {x}_{i}}\right)\), modulus of elasticity \((E)\) and moment of inertia of the backbone, where \({D}_{{\text{Outer}}}\) and \({D}_{{\text{Inner}}}\) are the outer and inner diameters of the backbone.

\({U}_{{e}_{i}}=\frac{1}{2}{\left(EI\right)}_{i}\underset{0}{\overset{{l}_{i}}{\int }}{\left(\frac{{\partial }^{2}{W}_{i}\left({x}_{i},t\right)}{\partial {x}_{i}^{2}}\right)}^{2}{\text{d}}{x}_{i}; {\text{where}} {I}_{i}=\frac{\pi }{64}\left({D}_{{\text{Outer}}}^{4}-{D}_{{\text{Inner}}}^{4}\right)\)

Substituting the slope from the Euler–Bernoulli beam theory in the above expression produces the equation below:

$${U}_{{e}_{i}}=\frac{1}{2}{\left(EI\right)}_{i}\underset{0}{\overset{{l}_{i}}{\int }}\left(\frac{{\theta }_{i}}{{L}_{i}}\right){\text{d}}{L}_{i}=\frac{1}{2}{\left(EI\right)}_{i}\frac{{\theta }_{i}^{2}}{{l}_{i}}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachouri, V., Pathak, P.M. Controlling Tendons to Modulate Stiffness of a Planar-to-Spatial Tendon-Driven Continuum Manipulator Under External Uncertain Forces. J Bionic Eng 21, 821–841 (2024). https://doi.org/10.1007/s42235-023-00473-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00473-4

Keywords

Navigation