Skip to main content
Log in

Modular Soft Robotic Crawlers Based on Fluidic Prestressed Composite Actuators

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Soft robotic crawlers have limited payload capacity and crawling speed. This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite (FPC) actuators. The FPC actuator is precurved and a pneumatic source is used to flatten it, requiring no energy cost to maintain the equilibrium curved shape. Pressurizing and depressurizing the actuators generate alternating stretching and bending motions of the actuators, achieving the crawling motion of the robotic crawler. Multi-modal locomotion (crawling, turning, and pipe climbing) is achieved by modular reconfiguration and gait design. An analytical kinematic model is proposed to characterize the quasi-static curvature and step size of a single-module crawler. Multiple configurations of robotic crawlers are fabricated to demonstrate the crawling ability of the proposed design. A set of systematic experiments are set up and conducted to understand how crawler responses vary as a function of FPC prestrains, input pressures, and actuation frequencies. As per the experiments, the maximum carrying load ratio (carrying load divided by robot weight) is found to be 22.32, and the highest crawling velocity is 3.02 body length (BL) per second (392 mm/s). Multi-modal capabilities are demonstrated by reconfiguring three soft crawlers, including a matrix crawler robot crawling in amphibious environments, and an inching crawler turning at an angular velocity of 2\(^\circ \)/s, as well as earthworm-like crawling robots climbing a 20\(^\circ \) inclination slope and pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chen, S., Cao, Y., Sarparast, M., Yuan, H., Dong, L., Tan, X., & Cao, C. (2020). Soft crawling robots: Design, actuation, and locomotion. Advanced Materials Technologies, 5(2), 1900837. https://doi.org/10.1002/admt.201900837

    Article  Google Scholar 

  2. Sun, Y., Abudula, A., Yang, H., Chiang, S. S., Wan, Z., Ozel, S., Hall, R., Skorina, E., Luo, M., & Onal, C. D. (2021). Soft mobile robots: A review of soft robotic locomotion modes. Current Robotics Reports, 2, 371–397. https://doi.org/10.1007/s43154-021-00070-5

    Article  Google Scholar 

  3. Aracri, S., Giorgio-Serchi, F., Suaria, G., Sayed, M. E., Nemitz, M. P., Mahon, S., & Stokes, A. A. (2021). Soft robots for ocean exploration and offshore operations: A perspective. Soft Robotics, 8(6), 625–639. https://doi.org/10.1089/soro.2020.0011

    Article  Google Scholar 

  4. Yu, W., Li, X., Chen, D., Liu, J., Su, J., Liu, J., Cao, C., & Yuan, H. (2022). A minimally designed soft crawling robot for robust locomotion in unstructured pipes. Bioinspiration & Biomimetics, 17(5), 056001. https://doi.org/10.1088/1748-3190/ac7492

    Article  Google Scholar 

  5. Wu, C., Yan, H., Cai, A., & Cao, C. (2022). A dielectric elastomer actuator-driven vibro-impact crawling robot. Micromachines, 13(10), 1660. https://doi.org/10.3390/mi13101660

    Article  Google Scholar 

  6. Hu, T., Lu, X., & Liu, J. (2023). Inchworm-like soft robot with multimodal locomotion using an acrylic stick-constrained dielectric elastomer actuator. Advanced Intelligent Systems, 5(2), 2200209. https://doi.org/10.1002/aisy.202200209

    Article  Google Scholar 

  7. Hu, Q., Dong, E., & Sun, D. (2022). Soft modular climbing robots. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2022.3189228

    Article  Google Scholar 

  8. Kim, Y., Lee, Y., & Cha, Y. (2021). Origami pump actuator based pneumatic quadruped robot (oparo). IEEE Access, 9, 41010–41018. https://doi.org/10.1109/ACCESS.2021.3065402

    Article  Google Scholar 

  9. Feng, M., Yang, D., Majidi, C., & Gu, G. (2023). High-speed and low-energy actuation for pneumatic soft robots with internal exhaust air recirculation. Advanced Intelligent Systems, 5(4), 2200257. https://doi.org/10.1002/aisy.202200257

    Article  Google Scholar 

  10. Lee, S., Her, I., Jung, W., & Hwang, Y. (2023). Snakeskin-inspired 3d printable soft robot composed of multi-modular vacuum-powered actuators. In: Actuators, MDPI, vol 12, p 62, https://doi.org/10.3390/act12020062

  11. Chen, G., Lin, T., Lodewijks, G., & Ji, A. (2023). Design of an active flexible spine for wall climbing robot using pneumatic soft actuators. Journal of Bionic Engineering, 20(2), 530–542. https://doi.org/10.1007/s42235-022-00273-2

    Article  Google Scholar 

  12. Duggan, T., Horowitz, L., Ulug, A., Baker, E., & Petersen, K. (2019). Inchworm-inspired locomotion in untethered soft robots. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), IEEE, pp. 200–205. https://doi.org/10.1109/ROBOSOFT.2019.8722716

  13. Ma, H., Zhou, J., Meng, L., Jiang, J., & Ma, S. (2022). Legless squamate reptiles inspired design: Simple soft crawling actuator. In: 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, pp. 93–98. https://doi.org/10.1109/ROBIO55434.2022.10011788

  14. Wu, C., Zhang, Z., & Zheng, W. (2022). A twisted and coiled polymer artificial muscles driven soft crawling robot based on enhanced antagonistic configuration. Machines, 10(2), 142. https://doi.org/10.3390/machines10020142

    Article  Google Scholar 

  15. Zhang, Y., Yang, D., Yan, P., Zhou, P., Zou, J., & Gu, G. (2021). Inchworm inspired multimodal soft robots with crawling, climbing, and transitioning locomotion. IEEE Transactions on Robotics, 38(3), 1806–1819. https://doi.org/10.1109/TRO.2021.3115257

    Article  Google Scholar 

  16. Niu, H., Feng, R., Xie, Y., Jiang, B., Sheng, Y., Yu, Y., Baoyin, H., & Zeng, X. (2021). Magworm: A biomimetic magnet embedded worm-like soft robot. Soft Robotics, 8(5), 507–518. https://doi.org/10.1089/soro.2019.0167

    Article  Google Scholar 

  17. Xie, D., Liu, J., Kang, R., & Zuo, S. (2020). Fully 3d-printed modular pipe-climbing robot. IEEE Robotics and Automation Letters, 6(2), 462–469. https://doi.org/10.1109/LRA.2020.3047795

    Article  Google Scholar 

  18. Jiao, Z., Zhang, C., Wang, W., Pan, M., Yang, H., & Zou, J. (2019). Advanced artificial muscle for flexible material-based reconfigurable soft robots. Advanced Science, 6(21), 1901371. https://doi.org/10.1002/advs.201901371

    Article  Google Scholar 

  19. Zhou, Y., Headings, L. M., & Dapino, M. J. (2022). Modeling of soft robotic grippers integrated with fluidic prestressed composite actuators. Journal of Mechanisms and Robotics, 10(1115/1), 4052699.

    Google Scholar 

  20. Zhou, Y., Headings, L. M., & Dapino, M. J. (2022). Modeling of fluidic prestressed composite actuators with application to soft robotic grippers. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2021.3139770

    Article  Google Scholar 

  21. Zhou, Y., & Xu, Z. (2023). Mechanically prestressed pneumatically driven bistable soft actuators. Journal of Mechanisms and Robotics, 16(5), 051006. https://doi.org/10.1115/1.4062949

    Article  MathSciNet  Google Scholar 

  22. Xu, Z., & Zhou, Y. (2023). Bistable composites with intrinsic pneumatic actuation and non-cylindrical curved shapes. Materials Letters. https://doi.org/10.1016/j.matlet.2023.135381

    Article  Google Scholar 

  23. Xu, Z., Hu, L., & Zhou, Y. (2022). Pneumatic soft robotic crawler integrated with a precurved actuator enables fast locomotion. In: 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, pp. 507–512. https://doi.org/10.1109/ROBIO55434.2022.10011745

  24. Sun, W., Liang, H., Zhang, F., Wang, H., Lu, Y., Li, B., & Chen, G. (2023). Dielectric elastomer minimum energy structure with a unidirectional actuation for a soft crawling robot: Design, modeling, and kinematic study. International Journal of Mechanical Sciences, 238, 107837. https://doi.org/10.1016/j.ijmecsci.2022.107837

    Article  Google Scholar 

  25. Yang, P., Huang, B., McCoul, D., Xie, D., Li, M., & Zhao, J. (2023). Springworm: A soft crawling robot with a large-range omnidirectional deformable rectangular spring for control rod drive mechanism inspection. Soft Robotics, 10(2), 280–291. https://doi.org/10.1089/soro.2021.0127

    Article  Google Scholar 

  26. Su, M., Xie, R., Qiu, Y., & Guan, Y. (2023). Design, mobility analysis and gait planning of a leech-like soft crawling robot with stretching and bending deformation. Journal of Bionic Engineering, 20(1), 69–80. https://doi.org/10.1007/s42235-022-00256-3

    Article  Google Scholar 

  27. Scibelli, A. E., Donatelli, C. M., Tidswell, B. K., Payton, M. R., Tytell, E. D., & Trimmer, B. A. (2022). Monolith: A soft non-pneumatic foam robot with a functional mesh skin for use in delicate environments. Advanced Robotics, 36(7), 359–371. https://doi.org/10.1080/01691864.2022.2029764

    Article  Google Scholar 

  28. Xue, J., Du, Y., Zhao, W., & Gao, X. (2022). A modular crawling robot driven by a single-layer conical dielectric elastomer. In: 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, pp 783–788. https://doi.org/10.1109/ROBIO55434.2022.10011749

  29. Du, T., Sun, L., & Wan, J. (2022). A worm-like crawling soft robot with pneumatic actuators based on selective laser sintering of tpu powder. Biomimetics, 7(4), 205. https://doi.org/10.3390/biomimetics7040205

    Article  Google Scholar 

  30. Fang, D., Jia, G., Wu, J., Niu, X., Li, P., Wang, R., Zhang, Y., & Zhang, J. (2023). A novel worm-like in-pipe robot with the rigid and soft structure. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-023-00395-1

    Article  Google Scholar 

  31. Karipoth, P., Christou, A., Pullanchiyodan, A., & Dahiya, R. (2022). Bioinspired inchworm-and earthworm-like soft robots with intrinsic strain sensing. Advanced Intelligent Systems, 4(2), 2100092. https://doi.org/10.1002/aisy.202100092

    Article  Google Scholar 

  32. Wu, S., Hong, Y., Zhao, Y., Yin, J., & Zhu, Y. (2023). Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Science Advances, 9(12), eadf8014. https://doi.org/10.1126/sciadv.adf8014

    Article  Google Scholar 

  33. Xu, Z., Hu, L., & Zhou, Y. (2022). A soft gripper integrated with mechanically-prestressed soft actuators. In: 2022 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), IEEE, pp. 190–194. https://doi.org/10.1109/SDPC55702.2022.9915943

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant No. 62203174 and the Guangzhou Municipal Science and Technology Project under Grant No. 202201010179.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjie Jiang or Yitong Zhou.

Ethics declarations

Conflict of Interest

We declare that we have no financial or personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of the manuscript entitled.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Hu, L., Xiao, L. et al. Modular Soft Robotic Crawlers Based on Fluidic Prestressed Composite Actuators. J Bionic Eng 21, 694–706 (2024). https://doi.org/10.1007/s42235-024-00487-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-024-00487-6

Keywords

Navigation