Skip to main content
Log in

Binary Hybrid Artificial Hummingbird with Flower Pollination Algorithm for Feature Selection in Parkinson’s Disease Diagnosis

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Parkinson’s disease is a neurodegenerative disorder that inflicts irreversible damage on humans. Some experimental data regarding Parkinson’s patients are redundant and irrelevant, posing significant challenges for disease detection. Therefore, there is a need to devise an effective method for the selective extraction of disease-specific information, ensuring both accuracy and the utilization of fewer features. In this paper, a Binary Hybrid Artificial Hummingbird and Flower Pollination Algorithm (FPA), called BFAHA, is proposed to solve the problem of Parkinson’s disease diagnosis based on speech signals. First, combining FPA with Artificial Hummingbird Algorithm (AHA) can take advantage of the strong global exploration ability possessed by FPA to improve the disadvantages of AHA, such as premature convergence and easy falling into local optimum. Second, the Hemming distance is used to determine the difference between the other individuals in the population and the optimal individual after each iteration, if the difference is too significant, the cross-mutation strategy in the genetic algorithm (GA) is used to induce the population individuals to keep approaching the optimal individual in the random search process to speed up finding the optimal solution. Finally, an S-shaped function converts the improved algorithm into a binary version to suit the characteristics of the feature selection (FS) tasks. In this paper, 10 high-dimensional datasets from UCI and the ASU are used to test the performance of BFAHA and apply it to Parkinson’s disease diagnosis. Compared with other state-of-the-art algorithms, BFAHA shows excellent competitiveness in both the test datasets and the classification problem, indicating that the algorithm proposed in this study has apparent advantages in the field of feature selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding authors.

References

  1. De Rijk, M. C., Launer, L. J., Berger, K., Breteler, M. M., Dartigues, J. F., Baldereschi, M., Fratiglioni, L., Lobo, A., Martinez-Lage, J., Trenkwalder, C., & Hofman, A. (2000). Prevalence of Parkinson’s disease in Europe: A collaborative study of population-based cohorts. Neurologic diseases in the elderly research group. Neurology, 54(11 Suppl 5), S21-23.

    Google Scholar 

  2. Goyal, J., Khandnor, P., & Aseri, T. C. (2020). A comparative analysis of machine learning classifiers for dysphonia-based classification of Parkinson’s disease. International Journal of Data Science and Analytics, 11(1), 69–83. https://doi.org/10.1007/s41060-020-00234-0.

    Article  Google Scholar 

  3. Fahn, S. (2003). Description of Parkinson’s disease as a clinical syndrome. Annals of the New York Academy of Sciences, 991(1), 1–14. https://doi.org/10.1111/j.1749-6632.2003.tb07458.x.

    Article  Google Scholar 

  4. Politis, M., Wu, K., Molloy, S., Bain, P. G., Chaudhuri, K. R., & Piccini, P. (2010). Parkinson’s disease symptoms: The patient’s perspective. Movement Disorders, 25(11), 1646–1651. https://doi.org/10.1002/mds.23135.

    Article  Google Scholar 

  5. Rostami, M., Berahmand, K., & Forouzandeh, S. (2021). A novel community detection based genetic algorithm for feature selection. Journal of Big Data, 8(1), 1–27. https://doi.org/10.1186/s40537-020-00398-3.

    Article  Google Scholar 

  6. Kale, G. A., & Yüzgeç, U. (2022). Advanced strategies on update mechanism of sine cosine optimization algorithm for feature selection in classification problems. Engineering Applications of Artificial Intelligence, 107, 104506. https://doi.org/10.1016/j.engappai.2021.104506.

    Article  Google Scholar 

  7. Rao, H., Shi, X., Rodrigue, A. K., Feng, J., Xia, Y., Elhoseny, M., Yuan, X., & Gu, L. (2019). Feature selection based on artificial bee colony and gradient boosting decision tree. Applied Soft Computing, 74, 634–642. https://doi.org/10.1016/j.asoc.2018.10.036.

    Article  Google Scholar 

  8. Diaz, P. M., & Jiju, M. J. E. (2021). A comparative analysis of meta-heuristic optimization algorithms for feature selection and feature weighting in neural networks. Evolutionary Intelligence, 15(4), 2631–2650. https://doi.org/10.1007/s12065-021-00634-6.

    Article  Google Scholar 

  9. Gupta, S., Abderazek, H., Yıldız, B. S., Yildiz, A. R., Mirjalili, S., & Sait, S. M. (2021). Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2021.115351.

    Article  Google Scholar 

  10. Ghasemi, M., Zare, M., Zahedi, A., Akbari, M.-A., Mirjalili, S., & Abualigah, L. (2023). Geyser inspired algorithm: A new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-023-00437-8.

    Article  Google Scholar 

  11. Kennedy, J., Eberhart, R. C. (1997) . A discrete binary version of the particle swarm algorithm. In 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 4104-4108. https://doi.org/10.1109/ICSMC.1997.637339.

  12. Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., & Mirjalili, S. (2018). Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 161, 185–204. https://doi.org/10.1016/j.knosys.2018.08.003.

    Article  Google Scholar 

  13. Hussien, A. G., Oliva, D., Houssein, E. H., Juan, A. A., & Yu, X. (2020). Binary whale optimization algorithm for dimensionality reduction. Mathematics, 8(10), 1821. https://doi.org/10.3390/math8101821.

    Article  Google Scholar 

  14. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893.

    Article  Google Scholar 

  15. Dahmani, S., & Yebdri, D. (2020). Hybrid algorithm of particle swarm optimization and grey wolf optimizer for reservoir operation management. Water resources management, 34(15), 4545–4560. https://doi.org/10.1007/s11269-020-02656-8.

    Article  Google Scholar 

  16. Wang, Z., Luo, Q., & Zhou, Y. (2021). Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems. Engineering with Computers, 37(4), 3665–3698. https://doi.org/10.1007/s00366-020-01025-8.

    Article  Google Scholar 

  17. Kaur, M., Kaur, R., Singh, N., & Dhiman, G. (2022). Schoa: A newly fusion of sine and cosine with chimp optimization algorithm for hls of datapaths in digital filters and engineering applications. Engineering with Computers, 38(2), 975–1003. https://doi.org/10.1007/s00366-020-01233-2.

    Article  Google Scholar 

  18. Zare, M., Ghasemi, M., Zahedi, A., Golalipour, K., Mohammadi, S. K., Mirjalili, S., & Abualigah, L. (2023). A global best-guided firefly algorithm for engineering problems. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-023-00386-2.

    Article  Google Scholar 

  19. He, Y., Zhou, Y., Wei, Y., Luo, Q., & Deng, W. (2023). Wind driven butterfly optimization algorithm with hybrid mechanism avoiding natural enemies for global optimization and PID controller design. Journal of Bionic Engineering. https://doi.org/10.1007/s42235-023-00416-z.

    Article  Google Scholar 

  20. Gutowski, N., Schang, D., Camp, O., & Abraham, P. (2022). A novel multi-objective medical feature selection compass method for binary classification. Artificial Intelligence in Medicine, 127, 102277. https://doi.org/10.1016/j.artmed.2022.102277.

    Article  Google Scholar 

  21. Kanan, H. R., & Faez, K. (2008). An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system. Applied Mathematics and Computation, 205(2), 716–725. https://doi.org/10.1016/j.amc.2008.05.115.

    Article  Google Scholar 

  22. Samarthrao, K. V., & Rohokale, V. M. (2022). A hybrid meta-heuristic-based multi-objective feature selection with adaptive capsule network for automated email spam detection. International Journal of Intelligent Robotics and Applications. https://doi.org/10.1007/s41315-021-00217-9.

    Article  Google Scholar 

  23. Sawhney, R., Mathur, P., Shankar, R. (2018). A firefly algorithm based wrapper-penalty feature selection method for cancer diagnosis. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science, vol 10960. Springer, Cham. doi: https://doi.org/10.1007/978-3-319-95162-1_30.

  24. Eroglu, Y., Yildirim, M., & Cinar, A. (2022). mRMR-based hybrid convolutional neural network model for classification of Alzheimer’s disease on brain magnetic resonance images. International Journal of Imaging Systems and Technology, 32(2), 517–527. https://doi.org/10.1002/ima.22632.

    Article  Google Scholar 

  25. Demiroğlu, U., Şenol, B., Yildirim, M., & Eroğlu, Y. (2023). Classification of computerized tomography images to diagnose non-small cell lung cancer using a hybrid model. Multimedia Tools and Applications, 82(21), 33379–33400. https://doi.org/10.1007/s11042-023-14943-8.

    Article  Google Scholar 

  26. Bugday, M. S., Akcicek, M., Bingol, H., & Yildirim, M. (2023). Automatic diagnosis of ureteral stone and degree of hydronephrosis with proposed convolutional neural network, relief, and gradient-weighted class activation mapping based deep hybrid model. International Journal of Imaging Systems and Technology, 33(2), 760–769. https://doi.org/10.1002/ima.22847.

    Article  Google Scholar 

  27. Siedlecki, W., & Sklansky, J. (1989). A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters, 10(5), 335–347. https://doi.org/10.1016/0167-8655(89)90037-8.

    Article  Google Scholar 

  28. Hafez, A. I., Hassanien, A. E., Zawbaa, H. M., Emary, E. (2015). Hybrid monkey algorithm with krill herd algorithm optimization for feature selection. In 2015 11th International Computer Engineering Conference (ICENCO), Cairo, pp. 273-277. doi: https://doi.org/10.1109/ICENCO.2015.7416361.

  29. Shunmugapriya, P., & Kanmani, S. (2017). A hybrid algorithm using ant and bee colony optimization for feature selection and classification (AC-ABC Hybrid). Swarm and Evolutionary Computation, 36, 27–36. https://doi.org/10.1016/j.swevo.2017.04.002.

    Article  Google Scholar 

  30. Mafarja, M., & Mirjalili, S. (2018). Whale optimization approaches for wrapper feature selection. Applied Soft Computing, 62, 441–453. https://doi.org/10.1016/j.asoc.2017.11.006.

    Article  Google Scholar 

  31. Sayed, G. I., Hassanien, A. E., & Azar, A. T. (2019). Feature selection via a novel chaotic crow search algorithm. Neural Computing and Applications, 31(1), 171–188. https://doi.org/10.1007/s00521-017-2988-6.

    Article  Google Scholar 

  32. Kumar, V., & Kaur, A. (2020). Binary spotted hyena optimizer and its application to feature selection. Journal of Ambient Intelligence and Humanized Computing, 11(7), 2625–2645. https://doi.org/10.1007/s12652-019-01324-z.

    Article  Google Scholar 

  33. Mandal, M., Singh, P. K., Ijaz, M. F., Shafi, J., & Sarkar, R. (2021). A tri-stage wrapper-filter feature selection framework for disease classification. Sensors (Basel), 21(16), 5571. https://doi.org/10.3390/s21165571.

    Article  Google Scholar 

  34. Pashaei, E., & Pashaei, E. (2022). An efficient binary chimp optimization algorithm for feature selection in biomedical data classification. Neural Computing and Applications, 34(8), 6427–6451. https://doi.org/10.1007/s00521-021-06775-0.

    Article  Google Scholar 

  35. Rajalaxmi, R., Kaavya, S. (2017). Feature selection for identifying Parkinson’s disease using binary grey wolf optimization. Proceedings of the International Conference on Intelligent Computing Systems (ICICS 2017–Dec 15th-16th 2017) organized by Sona College of Technology, Salem, Tamilnadu, India. Available at SSRN: https://ssrn.com/abstract=3131662 or https://doi.org/10.2139/ssrn.3131662.

  36. Gupta, D., Sundaram, S., Khanna, A., Hassanien, A. E., & De Albuquerque, V. H. C. (2018). Improved diagnosis of Parkinson’s disease using optimized crow search algorithm. Computers & Electrical Engineering, 68, 412–424. https://doi.org/10.1016/j.compeleceng.2018.04.014.

    Article  Google Scholar 

  37. Sehgal, S., Agarwal, M., Gupta, D., Sundaram, S., & Bashambu, A. (2020). Optimized grass hopper algorithm for diagnosis of Parkinson’s disease. SN Applied Sciences, 2(6), 1–18. https://doi.org/10.1007/s42452-020-2826-9.

    Article  Google Scholar 

  38. Li, H., Pun, C.-M., Xu, F., Pan, L., Zong, R., Gao, H., & Lu, H. (2021). A hybrid feature selection algorithm based on a discrete artificial bee colony for Parkinson’s diagnosis. ACM Transactions on Internet Technology, 21(3), 1–22. https://doi.org/10.1145/3397161.

    Article  Google Scholar 

  39. Rajammal, R. R., Mirjalili, S., Ekambaram, G., & Palanisamy, N. (2022). Binary grey wolf optimizer with mutation and adaptive k-nearest neighbour for feature selection in Parkinson’s disease diagnosis. Knowledge-Based Systems, 246, 108701. https://doi.org/10.1016/j.knosys.2022.108701.

    Article  Google Scholar 

  40. Fang, L., & Liang, X. (2023). A novel method based on nonlinear binary grasshopper whale optimization algorithm for feature selection. Journal of Bionic Engineering, 20(1), 237–252. https://doi.org/10.1007/s42235-022-00253-6.

    Article  Google Scholar 

  41. Shehadeh, H. A., Jebril, I. H., Jaradat, G. M., Ibrahim, D., Sihwail, R., Al Hamad, H., Chu, S.-C., & Alia, M. A. (2023). Intelligent diagnostic prediction and classification system for Parkinson’s disease by incorporating sperm swarm optimization (SSO) and density-based feature selection methods. International Journal of Advances in Soft Computing & Its Applications. https://doi.org/10.1016/j.knosys.2022.108701.

    Article  Google Scholar 

  42. Gafoor, S. H. A., & Theagarajan, P. (2022). Intelligent approach of score-based artificial fish swarm algorithm (SAFSA) for Parkinson’s disease diagnosis. International Journal of Intelligent Computing and Cybernetics, 15(4), 540–561. https://doi.org/10.1108/IJICC-10-2021-0226.

    Article  Google Scholar 

  43. Ayaz, Z., Naz, S., Khan, N. H., Razzak, I., & Imran, M. (2023). Automated methods for diagnosis of Parkinson’s disease and predicting severity level. Neural Computing and Applications, 35(20), 14499–14534. https://doi.org/10.1007/s00521-021-06626-y.

    Article  Google Scholar 

  44. Zhao, W., Wang, L., & Mirjalili, S. (2022). Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Computer Methods in Applied Mechanics and Engineering. https://doi.org/10.1016/j.cma.2021.114194.

    Article  MathSciNet  Google Scholar 

  45. Ramadan, A., Kamel, S., Hassan, M. H., Ahmed, E. M., & Hasanien, H. M. (2022). Accurate photovoltaic models based on an adaptive opposition artificial hummingbird algorithm. Electronics, 11(3), 318. https://doi.org/10.3390/electronics11030318.

    Article  Google Scholar 

  46. Hamida, M. A., El-Sehiemy, R. A., Ginidi, A. R., Elattar, E., & Shaheen, A. M. (2022). Parameter identification and state of charge estimation of Li-Ion batteries used in electric vehicles using artificial hummingbird optimizer. Journal of Energy Storage, 51, 104535. https://doi.org/10.1016/j.est.2022.104535.

    Article  Google Scholar 

  47. Sadoun, A. M., Najjar, I. R., Alsoruji, G. S., Abd-Elwahed, M., Elaziz, M. A., & Fathy, A. (2022). Utilization of improved machine learning method based on artificial hummingbird algorithm to predict the tribological behavior of Cu-Al2O3 nanocomposites synthesized by in situ method. Mathematics, 10(8), 1266. https://doi.org/10.3390/math10081266.

    Article  Google Scholar 

  48. Haddad, S., Lekouaghet, B., Benghanem, M., Soukkou, A., & Rabhi, A. (2022). Parameter estimation of solar modules operating under outdoor operational conditions using artificial hummingbird algorithm. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3174222.

    Article  Google Scholar 

  49. Zhao, W., Zhang, Z., Mirjalili, S., Wang, L., Khodadadi, N., & Mirjalili, S. M. (2022). An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems. Computer Methods in Applied Mechanics and Engineering, 398, 115223. https://doi.org/10.1016/j.cma.2022.115223.

    Article  MathSciNet  Google Scholar 

  50. Yildiz, B. S., Mehta, P., Sait, S. M., Panagant, N., Kumar, S., & Yildiz, A. R. (2022). A new hybrid artificial hummingbird-simulated annealing algorithm to solve constrained mechanical engineering problems. Materials Testing, 64(7), 1043–1050. https://doi.org/10.1515/mt-2022-0123.

    Article  Google Scholar 

  51. Fathy, A. (2022). A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems. Applied Energy, 323, 119605. https://doi.org/10.1016/j.apenergy.2022.119605.

    Article  Google Scholar 

  52. Kıymaç, E., & Kaya, Y. (2022). A novel automated CNN arrhythmia classifier with memory-enhanced artificial hummingbird algorithm. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2022.119162.

    Article  Google Scholar 

  53. Yang, X.-S. (2012). Flower pollination algorithm for global optimization. In J. Durand-Lose & N. Jonoska (Eds.), Unconventional computation and natural computation. UCNC 2012. Lecture notes in computer science. (Vol. 7445). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-642-32894-7_27.

    Chapter  Google Scholar 

  54. Wang, J., Li, Y., Hu, G., & Yang, M. (2022). An enhanced artificial hummingbird algorithm and its application in truss topology engineering optimization. Advanced Engineering Informatics, 54, 101761. https://doi.org/10.1016/j.aei.2022.101761.

    Article  Google Scholar 

  55. Ali, M. A., & SalamaAbdElminaam, D. (2022). A feature selection based on improved artificial hummingbird algorithm using random opposition-based learning for solving waste classification problem. Mathematics, 10(15), 2675. https://doi.org/10.3390/math10152675.

    Article  Google Scholar 

  56. Mirjalili, S., & Lewis, A. (2013). S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm and Evolutionary Computation, 9, 1–14. https://doi.org/10.1016/j.swevo.2012.09.002.

    Article  Google Scholar 

  57. Jiang, Y., Luo, Q., Wei, Y., Abualigah, L., & Zhou, Y. (2021). An efficient binary gradient-based optimizer for feature selection. Mathematical Biosciences and Engineering, 18(4), 3813–3854. https://doi.org/10.3934/mbe.2021192.

    Article  Google Scholar 

  58. Liang, J. J., Qu, B. Y., Suganthan, P. N. (2013). Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 635(2).

  59. Beheshti, Z. (2022). BMPA-TVSinV: A binary marine predators algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selection. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2022.109446.

    Article  Google Scholar 

  60. Asuncion A, Newman D. UCI machine learning repository (2007).

  61. Arizona State University’s (ASU) repository. http://featureselection.asu.edu/datasets.php.

  62. Sakar, C. O., Serbes, G., Gunduz, A., Tunc, H. C., Nizam, H., Sakar, B. E., Tutuncu, M., Aydin, T., Isenkul, M. E., & Apaydin, H. (2019). A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Applied Soft Computing, 74, 255–263. https://doi.org/10.1016/j.asoc.2018.10.022.

    Article  Google Scholar 

  63. Little, M., McSharry, P., Hunter, E., Spielman, J., & Ramig, L. (2008). Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. Nature Precedings. https://doi.org/10.1038/npre.2008.2298.1.

    Article  Google Scholar 

  64. Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical programming, 91, 201–213. https://doi.org/10.1007/s101070100263.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. U21A20464, 62066005, and by the Innovation Project of Guangxi Graduate Education under Grant No. YCSW2023259.

Author information

Authors and Affiliations

Authors

Contributions

LF investigation, experiment, writing—draft; YZ supervision, algorithm design and analysis, writing—review, QL writing—review and editing.

Corresponding author

Correspondence to Yongquan Zhou.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Zhou, Y. & Luo, Q. Binary Hybrid Artificial Hummingbird with Flower Pollination Algorithm for Feature Selection in Parkinson’s Disease Diagnosis. J Bionic Eng 21, 1003–1021 (2024). https://doi.org/10.1007/s42235-023-00478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00478-z

Keywords

Navigation