Skip to main content
Log in

A simple and novel coupling method for CFD–DEM modeling with uniform kernel-based approximation

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The Eulerian–Lagrangian approach is commonly employed in particulate flows, which can be classified into two subcategories: unresolved computational fluid dynamics-discrete element method (CFD–DEM) and resolved CFD–DEM. When the particle sizes are comparable to the cell sizes, the interphase coupling is not straightforward anymore and both the conventional unresolved CFD–DEM and resolved CFD–DEM are not applicable. In this paper, we propose a simple and novel coupling method for projecting and reconstructing the particle and interphase quantities, which is also called semi-resolved CFD–DEM. The particle quantities are uniformly distributed to the surrounding cells by expanding the fluid domain. The fluid phase quantities at the particle location are also reconstructed from the surrounding cells. Then, the relative velocity and the local void fraction for calculating the drag force are corrected. The expanding factor for the fluid domain is determined by comparing the drag force of the semi-resolved CFD–DEM with the resolved CFD–DEM results. It is found that the expanding factor increases linearly with the autocorrelation length. The developed method is validated by the simulation of a particle sedimentation and a sediment transport process, which proves that the present semi-resolved CFD–DEM fills the gap between the resolved and unresolved CFD–DEM. The difference between the implicit and explicit treatment of momentum exchange term is also discussed, and the explicit treatment shows better performance for large particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

The code of this study is available from the corresponding author upon reasonable request.

References

  1. Sun R, Xiao H (2016) CFD–DEM simulations of current-induced dune formation and morphological evolution. Adv Water Resour 92:228–239. https://doi.org/10.1016/j.advwatres.2016.03.018

    Article  ADS  Google Scholar 

  2. Zhou M, Wang S, Kuang S, Luo K, Fan J, Yu A (2019) CFD–DEM modelling of hydraulic conveying of solid particles in a vertical pipe. Powder Technol 354:893–905. https://doi.org/10.1016/j.powtec.2019.07.015

    Article  CAS  Google Scholar 

  3. Zhang Y, Lu X, Zhang X (2022) Numerical simulation on transportation behavior of dense coarse particles in vertical pipe with an optimized Eulerian–Lagrangian method. Phys Fluids 34(3):033305. https://doi.org/10.1063/5.0084263

    Article  CAS  ADS  Google Scholar 

  4. Su J, Zhou C, Ren G, Qiao Z, Chen Y (2023) Improving biomass mixture separation efficiency in multiple inclined channels of gas-solid fluidized bed: CFD–DEM simulation and orthogonal experiment. Powder Technol 413:118066. https://doi.org/10.1016/j.powtec.2022.118066

    Article  CAS  Google Scholar 

  5. Zhou ZY, Kuang SB, Chu KW, Yu AB (2010) Discrete particle simulation of particle-fluid flow: model formulations and their applicability. J Fluid Mech 661:482–510. https://doi.org/10.1017/S002211201000306X

    Article  MathSciNet  ADS  Google Scholar 

  6. Yao Y, Criddle CS, Fringer OB (2021) Competing flow and collision effects in a monodispersed liquid-solid fluidized bed at a moderate Archimedes number. J Fluid Mech 927:28. https://doi.org/10.1017/jfm.2021.780

    Article  MathSciNet  CAS  ADS  Google Scholar 

  7. Balachandran Nair AN, Pirker S, Saeedipour M (2022) Resolved CFD–DEM simulation of blood flow with a reduced-order RBC model. Comput Part Mech 9(4):759–774. https://doi.org/10.1007/s40571-021-00441-x

    Article  Google Scholar 

  8. Hoef MA, Sint Annaland M, Deen NG, Kuipers JAM (2008) Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu Rev Fluid Mech 40(1):47–70. https://doi.org/10.1146/annurev.fluid.40.111406.102130

    Article  MathSciNet  ADS  Google Scholar 

  9. Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476. https://doi.org/10.1016/j.jcp.2005.03.017

    Article  MathSciNet  ADS  Google Scholar 

  10. Higashida K, Rai K, Yoshimori W, Ikegai T, Tsuji T, Harada S, Oshitani J, Tanaka T (2016) Dynamic vertical forces working on a large object floating in gas-fluidized bed: Discrete particle simulation and Lagrangian measurement. Chem Eng Sci 151:105–115. https://doi.org/10.1016/j.ces.2016.05.023

    Article  CAS  Google Scholar 

  11. Zhang J, Li T, Ström H, Wang B, Løvås T (2023) A novel coupling method for unresolved CFD–DEM modeling. Int J Heat Mass Transf 203:123817. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123817

    Article  Google Scholar 

  12. Peng Z, Doroodchi E, Luo C, Moghtaderi B (2014) Influence of void fraction calculation on fidelity of CFD–DEM simulation of gas-solid bubbling fluidized beds. AIChE J 60(6):2000–2018. https://doi.org/10.1002/aic.14421

    Article  CAS  ADS  Google Scholar 

  13. Wang Z, Teng Y, Liu M (2019) A semi-resolved CFD–DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy. J Comput Phys 384:151–169. https://doi.org/10.1016/j.jcp.2019.01.017

    Article  MathSciNet  ADS  Google Scholar 

  14. Sun R, Xiao H (2015) Diffusion-based coarse graining in hybrid continuum-discrete solvers: applications in CFD–DEM. Int J Multiphase Flow 72:233–247. https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.014

  15. Zhang Y, Lu X, Zhang X (2021) An optimized Eulerian–Lagrangian method for two-phase flow with coarse particles: implementation in open-source field operation and manipulation, verification, and validation. Phys Fluids 33(11):113307. https://doi.org/10.1063/5.0067553

    Article  CAS  ADS  Google Scholar 

  16. Askarishahi M, Salehi M-S, Radl S (2018) Voidage correction algorithm for unresolved Euler–Lagrange simulations. Comput Part Mech 5(4):607–625. https://doi.org/10.1007/s40571-018-0193-8

    Article  Google Scholar 

  17. Zhang Y, Ren W, Li P, Zhang X, Lu X (2023) Calculation of particle volume fraction in computational fluid dynamics-discrete element method simulation of particulate flows with coarse particles. Phys Fluids 35(11):113330. https://doi.org/10.1063/5.0176521

    Article  CAS  ADS  Google Scholar 

  18. Balachandar S, Liu K, Lakhote M (2019) Self-induced velocity correction for improved drag estimation in Euler–Lagrange point-particle simulations. J Comput Phys 376:160–185. https://doi.org/10.1016/j.jcp.2018.09.033

    Article  MathSciNet  CAS  ADS  Google Scholar 

  19. Wu CL, Berrouk AS, Nandakumar K (2009) Three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh. Chem Eng J 152(2):514–529. https://doi.org/10.1016/j.cej.2009.05.024

    Article  CAS  Google Scholar 

  20. Wu CL, Zhan JM, Li YS, Lam KS, Berrouk AS (2009) Accurate void fraction calculation for three-dimensional discrete particle model on unstructured mesh. Chem Eng Sci 64(6):1260–1266. https://doi.org/10.1016/j.ces.2008.11.014

    Article  CAS  Google Scholar 

  21. Deb S, Tafti DK (2013) A novel two-grid formulation for fluid-particle systems using the discrete element method. Powder Technol 246:601–616. https://doi.org/10.1016/j.powtec.2013.06.014

    Article  CAS  Google Scholar 

  22. Glasser BJ, Goldhirsch I (2001) Scale dependence, correlations, and fluctuations of stresses in rapid granular flows. Phys Fluids 13(2):407–420. https://doi.org/10.1063/1.1338543

    Article  CAS  ADS  Google Scholar 

  23. Zhang Y, Zhao Y, Gao Z, Duan C, Xu J, Lu L, Wang J, Ge W (2019) Experimental and Eulerian–Lagrangian–Lagrangian study of binary gas-solid flow containing particles of significantly different sizes. Renew Energy 136:193–201. https://doi.org/10.1016/j.renene.2018.12.121

    Article  CAS  Google Scholar 

  24. Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource DEM and CFD–DEM. Progr Comput Fluid Dyn Int J 12(2–3):140–152. https://doi.org/10.1504/PCFD.2012.047457

    Article  MathSciNet  Google Scholar 

  25. Ren W, Zhang X, Zhang Y, Li P, Lu X (2023) Investigation of particle size impact on dense particulate flows in a vertical pipe. Phys Fluids 35(7):073302. https://doi.org/10.1063/5.0157609

    Article  CAS  ADS  Google Scholar 

  26. Liu K, Lakhote M, Balachandar S (2019) Self-induced temperature correction for inter-phase heat transfer in Euler–Lagrange point-particle simulation. J Comput Phys 396:596–615. https://doi.org/10.1016/j.jcp.2019.06.069

    Article  MathSciNet  ADS  Google Scholar 

  27. Ireland PJ, Desjardins O (2017) Improving particle drag predictions in Euler-Lagrange simulations with two-way coupling. J Comput Phys 338:405–430. https://doi.org/10.1016/j.jcp.2017.02.070

    Article  MathSciNet  CAS  ADS  Google Scholar 

  28. Capecelatro J, Desjardins O (2013) An Euler-Lagrange strategy for simulating particle-laden flows. J Comput Phys 238:1–31. https://doi.org/10.1016/j.jcp.2012.12.015

    Article  MathSciNet  ADS  Google Scholar 

  29. Goniva C, Kloss C, Deen NG, Kuipers JAM, Pirker S (2012) Influence of rolling friction on single spout fluidized bed simulation. Particuology 10(5):582–591. https://doi.org/10.1016/j.partic.2012.05.002

    Article  Google Scholar 

  30. Zhou M, Kuang S, Luo K, Zou R, Wang S, Yu A (2020) Modeling and analysis of flow regimes in hydraulic conveying of coarse particles. Powder Technol 373:543–554. https://doi.org/10.1016/j.powtec.2020.06.085

    Article  CAS  Google Scholar 

  31. Di Felice R (1994) The voidage function for fluid-particle interaction systems. Int J Multiph Flow 20(1):153–159. https://doi.org/10.1016/0301-9322(94)90011-6

    Article  Google Scholar 

  32. Berger R, Kloss C, Kohlmeyer A, Pirker S (2015) Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technol 278:234–247. https://doi.org/10.1016/j.powtec.2015.03.019

    Article  CAS  Google Scholar 

  33. Deen NG, Van Sint Annaland M, Van der Hoef MA, Kuipers JAM (2007) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62(1):28–44. https://doi.org/10.1016/j.ces.2006.08.014

    Article  CAS  Google Scholar 

  34. Zhu HP, Yu AB (2002) Averaging method of granular materials. Phys Rev E 66:021302. https://doi.org/10.1103/PhysRevE.66.021302

    Article  CAS  ADS  Google Scholar 

  35. Gui N, Yang X, Tu J, Jiang S (2018) A fine LES–DEM coupled simulation of gas-large particle motion in spouted bed using a conservative virtual volume fraction method. Powder Technol 330:174–189. https://doi.org/10.1016/j.powtec.2018.02.012

    Article  CAS  Google Scholar 

  36. Wu H, Gui N, Yang X, Tu J, Jiang S (2018) A smoothed void fraction method for CFD-DEM simulation of packed pebble beds with particle thermal radiation. Int J Heat Mass Transf 118:275–288. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.123

    Article  Google Scholar 

  37. Esteghamatian A, Euzenat F, Hammouti A, Lance M, Wachs A (2018) A stochastic formulation for the drag force based on multiscale numerical simulation of fluidized beds. Int J Multiph Flow 99:363–382. https://doi.org/10.1016/j.ijmultiphaseflow.2017.11.003

    Article  MathSciNet  CAS  Google Scholar 

  38. Xiao H, Sun J (2011) Algorithms in a robust hybrid CFD–DEM solver for particle-laden flows. Commun Comput Phys 9(2):297–323. https://doi.org/10.4208/cicp.260509.230210a

    Article  MathSciNet  Google Scholar 

  39. Zhang Y, Ren W, Li P, Zhang X, Lu X (2023) Flow regimes and characteristics of dense particulate flows with coarse particles in inclined pipe. Powder Technol 428:118859. https://doi.org/10.1016/j.powtec.2023.118859

    Article  CAS  Google Scholar 

  40. Zhang Y, Liu Y, Ren W, Li P, Zhang X, Lu X (2024) Kinematic waves and collision effects in dense fluid-particle flow during hydraulic conveying. Int J Multiph Flow 170:104643. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104643

    Article  CAS  Google Scholar 

  41. Li D, Christian H (2017) Simulation of bubbly flows with special numerical treatments of the semi-conservative and fully conservative two-fluid model. Chem Eng Sci 174:25–39. https://doi.org/10.1016/j.ces.2017.08.030

    Article  CAS  Google Scholar 

  42. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21(11):1525–1532. https://doi.org/10.2514/3.8284

    Article  ADS  Google Scholar 

  43. Zhang S, Zhao X, Bayyuk S (2014) Generalized formulations for the Rhie–Chow interpolation. J Comput Phys 258:880–914. https://doi.org/10.1016/j.jcp.2013.11.006

    Article  MathSciNet  ADS  Google Scholar 

  44. Jasak H (1996) Error analysis and estimation for the finite volume method with applications to fluid flows

  45. Schnorr Filho EA, Lima NC, Franklin EM (2022) Resolved CFD–DEM simulations of the hydraulic conveying of coarse grains through a very-narrow elbow. Powder Technol 395:811–821. https://doi.org/10.1016/j.powtec.2021.10.022

  46. Wang Z, Liu M (2021) On the determination of grid size smoothing distance in un- semi-resolved CFD–DEM simulation of particulate flows. Powder Technol 394:73–82. https://doi.org/10.1016/j.powtec.2021.08.044

    Article  CAS  Google Scholar 

  47. Jalalvand M, Charsooghi MA, Mohammadinejad S (2020) Smoothed Dissipative Particle Dynamics package for LAMMPS. Comput Phys Commun 255:107261. https://doi.org/10.1016/j.cpc.2020.107261

    Article  MathSciNet  CAS  Google Scholar 

  48. Yao Y, Criddle CS, Fringer OB (2021) The effects of particle clustering on hindered settling in high-concentration particle suspensions. J Fluid Mech 920:40. https://doi.org/10.1017/jfm.2021.470

    Article  MathSciNet  CAS  ADS  Google Scholar 

  49. Shnapp R, Bohbot-Raviv Y, Liberzon A, Fattal E (2020) Turbulence-obstacle interactions in the Lagrangian framework: applications for stochastic modeling in canopy flows. Physical Review Fluids 5:094601. https://doi.org/10.1103/PhysRevFluids.5.094601

    Article  ADS  Google Scholar 

  50. Ren W, Zhang X, Zhang Y, Lu X (2023) Investigation of motion characteristics of coarse particles in hydraulic collection. Phys Fluids 35(4):043322. https://doi.org/10.1063/5.0142221

    Article  CAS  ADS  Google Scholar 

  51. Xie Z, Wang S, Shen Y (2021) CFD–DEM modelling of the migration of fines in suspension flow through a solid packed bed. Chem Eng Sci 231:116261. https://doi.org/10.1016/j.ces.2020.116261

    Article  CAS  Google Scholar 

  52. Ten Cate A, Nieuwstad CH, Derksen JJ, Akker HEA (2002) Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys Fluids 14(11):4012–4025. https://doi.org/10.1063/1.1512918

    Article  CAS  ADS  Google Scholar 

  53. Schmeeckle MW (2014) Numerical simulation of turbulence and sediment transport of medium sand. J Geophys Res Earth Surf 119(6):1240–1262. https://doi.org/10.1002/2013JF002911

    Article  ADS  Google Scholar 

  54. Zeng J, Tang P, Li H, Zhang D (2021) Simulating particle settling in inclined narrow channels with the unresolved CFD–DEM method. Phys Rev Fluids 6:034302. https://doi.org/10.1103/PhysRevFluids.6.034302

    Article  ADS  Google Scholar 

  55. Wong M, Parker G (2006) Reanalysis and Correction of Bed-Load Relation of Meyer-Peter and Müller Using Their Own Database. J Hydraul Eng 132(11):1159–1168. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159)

    Article  Google Scholar 

  56. Nielsen P (1992) Coastal bottom boundary layers and sediment transport, vol 4. World Scientific, Singapore

    Book  Google Scholar 

  57. Sun R, Xiao H (2016) SediFoam: a general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport. Comput Geosci 89:207–219. https://doi.org/10.1016/j.cageo.2016.01.011

    Article  ADS  Google Scholar 

  58. Song T, Graf WH, Lemmin U (1994) Uniform flow in open channels with movable gravel bed. J Hydraul Res 32(6):861–876. https://doi.org/10.1080/00221689409498695

    Article  Google Scholar 

  59. Muste M, Patel VC (1997) Velocity profiles for particles and liquid in open-channel flow with suspended sediment. J Hydraul Eng 123(9):742–751. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:9(742)

    Article  Google Scholar 

  60. Kempe T, Vowinckel B, Frhlich J (2014) On the relevance of collision modeling for interface-resolving simulations of sediment transport in open channel flow. Int J Multiph Flow 58:214–235. https://doi.org/10.1016/j.ijmultiphaseflow.2013.09.008

    Article  MathSciNet  CAS  Google Scholar 

  61. Zhang Z, Wang J, Huang R, Qiu R, Chu X, Ye S, Wang Y, Liu Q (2023) Data-driven turbulence model for unsteady cavitating flow. Phys Fluids 35(1):015134. https://doi.org/10.1063/5.0134992

  62. Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4(3):633–635. https://doi.org/10.1063/1.858280

    Article  MathSciNet  ADS  Google Scholar 

  63. Ren W, Zhang Y, Zhang X, Lu X (2022) Investigation of the characteristics and mechanisms of the layer inversion in binary liquid-solid fluidized beds with coarse particles. Phys Fluids 34(10):103325. https://doi.org/10.1063/5.0111157

    Article  CAS  ADS  Google Scholar 

  64. Ergun S, Oring AA (1949) Fluid Flow through randomly packed columns and fluidized beds. Ind Eng Chem 41:1179–1184

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 12302516 and 12132018].

Author information

Authors and Affiliations

Authors

Contributions

YZ contributed to methodology, software, validation, data curation, and writing—original draft. WR performed validation, investigation, and writing—review and editing. PL contributed to methodology, validation, and writing—review and editing. XZ contributed to software, data curation, funding acquisition, and writing—review and editing. XL contributed to methodology, supervision, and writing–review and editing.

Corresponding author

Correspondence to Xuhui Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Contact force model

Appendix A. Contact force model

The expressions of the particle contact model can be found in [30] but are repeated here for the reader. When two particles overlap by a normal distance, \(\varvec{\delta }_n\), the normal (\(\varvec{f}_{n,ij}\)) and tangential (\(\varvec{f}_{t,ij}\)) contact force are given by

$$\begin{aligned} \varvec{f}_{n,ij}= & {} k_n\varvec{\delta }_n- \eta _n\Delta \textbf{U}_n , \end{aligned}$$
(A1)
$$\begin{aligned} \varvec{f}_{t,ij}= & {} {\left\{ \begin{array}{ll} k_t\varvec{\delta }_t- \eta _t\Delta \textbf{U}_t \qquad |\varvec{f}_{t,ij}|\le -\mu _s|\varvec{f}_{n,ij}|\frac{\Delta \textbf{U}}{\left| \Delta \textbf{U}\right| }\\ -\mu _s\left| \varvec{f}_{n,ij}\right| \frac{\Delta \textbf{U}}{\left| \Delta \textbf{U}\right| } \ \ \ \ |\varvec{f}_{t,ij}|>-\mu _s|\varvec{f}_{n,ij}|\frac{\Delta \textbf{U}}{\left| \Delta \textbf{U}\right| } \end{array}\right. } ,\nonumber \\ \end{aligned}$$
(A2)

where \(k_n\) and \(k_t\) are the normal and tangential spring constants, respectively. \(\eta _n\) and \(\eta _t\) are the normal and tangential damping coefficients, respectively. \(\mu _s\) is the sliding friction coefficient. \(\textbf{U}_n\) and \(\textbf{U}_t\) are the relative normal and tangential velocities between the particles. The spring constant and damping coefficient are given by the following equations

$$\begin{aligned} k_n= & {} \frac{4}{3}Y^{*}\sqrt{R^*|\varvec{\delta }_n|} , \end{aligned}$$
(A3)
$$\begin{aligned} \eta _n= & {} 2\sqrt{\frac{5}{6}}\beta \sqrt{S_{n}m^*} , \end{aligned}$$
(A4)
$$\begin{aligned} k_t= & {} 8G^{*}\sqrt{R^*|\varvec{\delta }_n|} , \end{aligned}$$
(A5)
$$\begin{aligned} \eta _t= & {} 2\sqrt{\frac{5}{6}}\beta \sqrt{S_{t}m^*} . \end{aligned}$$
(A6)

\(S_n\), \(S_t\), and \(\beta \) are given by

$$\begin{aligned} S_n= & {} 2Y^*\sqrt{R^*|\varvec{\delta }_n|} , \end{aligned}$$
(A7)
$$\begin{aligned} S_t= & {} 8G^*\sqrt{R^*|\varvec{\delta }_t|} , \end{aligned}$$
(A8)
$$\begin{aligned} \beta= & {} \frac{ln(e)}{\sqrt{ln^2(e)+\pi ^2}} , \end{aligned}$$
(A9)

where e is the coefficient of restitution. The effective Young’s modulus, \(Y^*\), effective shear modulus, \(G^*\), effective radius, \(R^*\), and effective mass, \(m^*\) are given by

$$\begin{aligned} \frac{1}{Y^*}= & {} \frac{\left( 1-\nu _i^2\right) }{Y_i}+\frac{\left( 1-\nu _j^2\right) }{Y_j} , \end{aligned}$$
(A10)
$$\begin{aligned} \frac{1}{G^*}= & {} \frac{2(2+\nu _i)(1-\nu _i)}{Y_i}+\frac{2(2+\nu _j)(1-\nu _j)}{Y_j} , \end{aligned}$$
(A11)
$$\begin{aligned} \frac{1}{R^*}= & {} \frac{1}{R_i}+\frac{1}{R_j} , \end{aligned}$$
(A12)
$$\begin{aligned} \frac{1}{m^*}= & {} \frac{1}{m_i}+\frac{1}{m_j} , \end{aligned}$$
(A13)

where \(\nu \) is the Poisson’s ratio.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ren, W., Li, P. et al. A simple and novel coupling method for CFD–DEM modeling with uniform kernel-based approximation. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-024-00725-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-024-00725-y

Keywords

Navigation