Skip to main content
Log in

Beyond Schwarzschild: new pulsating coordinates for spherically symmetric metrics

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Starting from a general transformation for spherically symmetric metrics where g_11=-1/g_00, we analyze coordinates with the common property of conformal flatness at constant solid angle element. Three general possibilities arise: one where tortoise coordinate appears as the unique solution, other that includes Kruskal-Szekeres coordinates as a very specific case, but that also allows other similar transformations, and finally a new set of coordinates with very different properties than the other two. In particular, it represents any causal patch of the spherically symmetric metrics in a compactified form. We analyze general properties of the new proposed “pulsating coordinates”, and then proceed to apply the transformation for the Schwarzschild spacetime, as well as for several cosmological solutions, contrasting properties with the Kruskal case. In particular, Anti-de-Sitter solution presents interesting features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dray, T.: Differential forms and the geometry of general relativity (CRC Press, Boca Raton FL, 2014) pp. 34-55, https://doi.org/10.1201/b17620

  2. Kruskal, M.D.: Maximal Extension of Schwarzschild Metric. Phys. Rev. 119, 1743 (1960). https://doi.org/10.1103/PhysRev.119.1743

    Article  ADS  MathSciNet  Google Scholar 

  3. Szekeres, G.: On the Singularities of a Riemannian Manifold. Publ. Math. Debr. 7, 285 (1960). https://doi.org/10.1023/A:1020744914721

    Article  MathSciNet  Google Scholar 

  4. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, pp. 820–835. San Francisco CA, W. H. Freeman and Company (2004)

    Google Scholar 

  5. Carroll, S.M.: Spacetime and Geometry: An Introduction to General Relativity, pp. 329–336. Addison-Wesley, San Francisco CA (2004)

    Google Scholar 

  6. Jacobson, T.: When is \(g_{tt}g_{rr}=-1\)? Class. Quant. Grav. 24, 5717 (2007). https://doi.org/10.1088/0264-9381/24/22/N02

    Article  ADS  Google Scholar 

  7. Nieto, J. A., León, E. A., García-Quintero, C.: Cosmological-static metric correspondence and Kruskal type solutions from symmetry transformations, Rev. Mex. Fís., vol. 68, no. 4, pp. 040701 1-, (2022), https://doi.org/10.31349/RevMexFis.68.040701

  8. Schwarzschild, K.: On the gravitational field of a mass point according to Einstein’s theory. Abh. Konigl. Preuss. Akad. Wissenschaften Jahre 1906,92, Berlin, 1907 1916, 189-196, (1916)

  9. Bronnikov, K.A., Elizalde, E., Odintsov, S.D., Zaslavskii, O.B.: Horizon versus singularities in spherically symmetry space-times. Phys. Rev. D 78, 060449 (2008). https://doi.org/10.1103/PhysRevD.78.064049

    Article  Google Scholar 

  10. Peebles, P.J.E.: Principles of Physical Cosmology, pp. 70–78. Princeton University Press, Princeton NJ (1993)

    Google Scholar 

  11. Florides, P.S.: The Robertson-Walker metrics expressible in static form. Gen. Rel. Grav. 12, 563 (1980). https://doi.org/10.1007/BF00756530

    Article  ADS  MathSciNet  Google Scholar 

  12. Melia, F.: Cosmological redshift in Friedmann-Robertson-Walker metrics with constant space-time curvature. MNRAS 422, 1418 (2012). https://doi.org/10.1111/j.1365-2966.2012.20714.x

    Article  ADS  Google Scholar 

  13. Mitra, A.: When can an expanding universe look Static and vice versa: a comprehensive study. Int. J. Mod. Phys D 24 (2015), https://doi.org/10.1142/S0218271815500327

  14. Guven, J., Núñez, D.: Schwarzschild-de Sitter space and its perturbations. Phys. Rev. D 42, 2577 (1990). https://doi.org/10.1103/PhysRevD.42.2577

    Article  ADS  MathSciNet  Google Scholar 

  15. Hirsch, M. W., Smale, S., Devaney, R. L.: Differential equations, dynamical systems, and an introduction to chaos (Academic Press, Waltham MA, 2013) pp. 11-15, https://doi.org/10.1016/C2009-0-61160-0

  16. Maldacena, J.M.: The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 231 (1999). https://doi.org/10.4310/ATMP.1998.v2.n2.a1

    Article  MathSciNet  Google Scholar 

  17. Aviles-Niebla, C., Nieto-Marin, P.A., Nieto, J.A.: Towards exterior/interior correspondence of black holes. Int. J. Geom. Meth. Mod. Phys. 17, 2050180 (2020). https://doi.org/10.1142/S0219887820501807

    Article  MathSciNet  Google Scholar 

  18. Graves, J.C., Brill, D.R.: Oscillatory Character of Reissner-Nordström Metric for an Ideal Charged Wormhole. Phys. Rev. 120, 1507 (1960). https://doi.org/10.1103/PhysRev.120.1507

    Article  ADS  MathSciNet  Google Scholar 

  19. Lemos, J.P.S., Silva, D.L.F.G.: Maximal extension of the Schwarzschild metric: from Painlevé-Gullstrand to Kruskal–Szekeres. Ann. Phys. 430, 168497 (2021)

    Article  Google Scholar 

  20. Toporensky, A.V., Zaslavskii, O.B.: Regular frames for spherically symmetric black holes revisited. Symmetry 14, 40 (2022). https://doi.org/10.3390/sym14010040

    Article  ADS  Google Scholar 

  21. Varadarajan, M.: Kruskal coordinates as canonical variables for Schwarzschild black holes. Phys. Rev. D 63, 084007 (2001). https://doi.org/10.1103/PhysRevD.63.084007

    Article  ADS  MathSciNet  Google Scholar 

  22. D’Inverno, R.: Introducing Einstein’s relativity, pp. 85–90. Oxford University Press, Oxford UK (1992)

    Book  Google Scholar 

Download references

Acknowledgements

ASR and BMO acknowledge a graduate fellowship grant by CONACYT-Mexico. The authors also thank the anonymous referee for useful comments that helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. León.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Existence of conformal flat transformation in (1+1) dimensions.

Appendix. Existence of conformal flat transformation in (1+1) dimensions.

Any (1+1) metric \(g_{ab}dx^{a}dx^{b}\) can be put in a conformal flat way \(\Omega \eta _{ab}dx^{a\prime }dx^{b\prime }\), where \(\eta _{ab}=diag(-1,1)\). The plainer way to see it is to consider null coordinates v and u. Here \({\textbf{g}}(\partial _{v},\partial _{v})=0\), where \(\partial _{v}\) is the basis for any null vector in the v-direction. Since the dual version in terms of the inverse metric is \({\textbf{g}}^{-1}(dv,dv)=0\), and given the one-form \(dv=(\partial v/\partial x^{a})dx^{a}\), this is the same as \(g^{ab}\partial v/\partial x^{a}\partial v/\partial x^{b}=0\), that can be seen as the definition of a null coordinate, and analog definitions for the other null coordinate u [22]. Defining \(x^{0^{\prime }}=v \) and \(x^{1^{\prime }}=u\), those relations can be casted as the transformation of the metric to new coordinates, in the form

$$\begin{aligned} g^{\alpha \beta }\frac{\partial v}{\partial x^{\alpha }}\frac{\partial v}{ \partial x^{\beta }}=g^{0^{\prime }0^{\prime }}=0 \end{aligned}$$
(A.1)

and

$$\begin{aligned} g^{\alpha \beta }\frac{\partial u}{\partial x^{\alpha }}\frac{\partial u}{ \partial x^{\beta }}=g^{1^{\prime }1^{\prime }}=0. \end{aligned}$$
(A.2)

Now, if \(g^{ab}\) has diagonal elements equal to zero, so does \(g_{ab}\), since in this case \(g^{00}=(g^{01})^{2}g_{11}\) and \(g^{01}\ne 0\) for the inverse to exist. It follows that \(g_{11}=0\) and similar argument yields \( g_{00}=0\). Then, in terms of null coordinates the system simplifies to

$$\begin{aligned} ds^{2}=g_{\alpha ^{\prime }\beta ^{\prime }}dx^{\alpha ^{\prime }}dx^{\beta ^{\prime }}=g_{0^{\prime }1^{\prime }}(dvdu+dudv). \end{aligned}$$
(A.3)

Rotating coordinates by means of \(T=v+u\) and \(X=v-u\), the metric takes the assumed conformal form

$$\begin{aligned} ds^{2}=\Omega (-dT^{2}+dX^{2}), \end{aligned}$$
(A.4)

where \(\Omega =-2g_{0^{\prime }1^{\prime }}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León, E.A., Nieto, J.A., Sandoval-Rodríguez, A. et al. Beyond Schwarzschild: new pulsating coordinates for spherically symmetric metrics. Gen Relativ Gravit 56, 35 (2024). https://doi.org/10.1007/s10714-024-03218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03218-8

Keywords

Navigation