Skip to main content

Advertisement

Log in

Water stress tolerance is coordinated with water use capacity and growth under water deficit across six fruit tree species

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

To compare water stress tolerance traits between different fruit tree species under the same experimental conditions can provide valuable information for understanding the mechanisms underlying water stress tolerance in a broader sense. This work aimed to determine and compare the water stress tolerance of six fruit tree species typically cultivated in Mediterranean regions, i.e., pomegranate, fig, mandarin, avocado, and two Prunus species ('R40' and 'R20') and evaluate its association with water use and growth under water deficit. Iso-anisohydric behavior (low to high water stress tolerance) was assessed through a multi-trait approach and associated with growth and water use under well-watered and water deficit conditions. Avocado and mandarin were classified as species with stricter stomatal control over water potential, while pomegranate, fig, and Prunus spp. showed a lesser stomatal control. This classification was supported by the multi-traits analysis, which showed that avocado and mandarin, in contrast to the rest of the species, were characterized by more sensitive gas-exchange thresholds. A more isohydric behavior was associated with lower soil water use capacity, but higher root hydraulic conductivity, and a lower growth capacity. Some traits, such as the fraction of transpirable soil water thresholds, root hydraulic conductivity, and residual soil water content, provide valuable information to discriminate between species or genotypes that are better adapted to water deficit conditions. These traits explain the position of the species in the iso-anisohydric spectrum and allow us to understand and develop better strategies for water management in agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alsina MM, Smart DR, Bauerle T, de Herralde F, Biel C, Stockert C, Negron C, Save R (2011) Seasonal changes of whole root system conductance by a drought-tolerant grape root system. J Exp Bot 62:99–109

    Article  CAS  PubMed  Google Scholar 

  • Ammar A, Ben Aissa I, Mars M, Gouiaa M (2020) Comparative physiological behavior of fig (Ficus carica L.) cultivars in response to water stress and recovery. Sci Hort 260:108881

    Article  CAS  Google Scholar 

  • Anderegg W, Klein T, Bartlett M, Sack L, Pellegrini A, Choat B, Jansen S (2016) Meta-analysis reveals the hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PNAS 113:5024–5029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bchir A, Escalona JM, Gallé A, Hernández-Montes E, Tortosa I, Braham M, Medrano H (2016) Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): looking for the most representative sample and sampling time. Agric Water Manag 167:11–20

    Article  Google Scholar 

  • Belko N, Zaman-Allah M, Cisse N, Diop NN, Zombre G, Ehlers JD, Vadez V (2012) Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Funct Plant Biol 39:306–322

    Article  PubMed  Google Scholar 

  • Bindi M, Bellesi S, Orlandini S, Fibbi L, Moriondo M, Sinclair T (2005) Influence of water deficit stress on leaf area development and transpiration of Sangiovese grapevines grown in pots. Am J Enol Vitic 56:68–72

    Article  Google Scholar 

  • Chandra R, Babu KD, Jadhav VT, Jaime A, Silva T (2010) Origin, history and domestication of pomegranate. Fruit Veg Cereal Sci Biotechnol 2:1–6

    Google Scholar 

  • Charrier G, Delzon S, Domec J-C, Zhang L, Delmas CEL, Merlin I, Corso D, King A, Ojeda H, Ollat N, Prieto JA, Scholach T, Skinner P, van Leeuwen C, Gambetta GA (2018) Drought will not leave your glass empty: low risk of hydraulic failure revealed by long-term drought observations in world’s top wine regions. Sci Adv 4:6969

    Article  Google Scholar 

  • CIREN (2023) Observatorio Institucional. https://observatorio.ciren.cl/profile/clima/rengo. Accessed 26 Feb 2024

  • Cochard H, Barigah S, Kleinhentz M, Eshel A (2008) Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? J Plant Physiol 165(976):982

    Google Scholar 

  • Cosme LHM, Schietti J, Costa FRC, Oliveira RS (2017) The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytol 215:113–125

    Article  PubMed  Google Scholar 

  • Cruiziat P, Cochard H, Améglio T (2002) Hydraulic architecture of trees: main concepts and results. J Ann for Sci 59:723–752

    Article  Google Scholar 

  • Dayer S, Herrera JC, Dai Z, Burlett R, Lamarque LJ, Delzon S, Bortolami G, Cochard H, Gambetta GA (2020) The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. J Exp Bot 71:4333–4344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delzon S (2015) New insight into leaf drought tolerance. Funct Ecol 29:1247–1249

    Article  Google Scholar 

  • Di Rienzo J, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo C (2011) InfoStat versión, Grupo InfoStat. Universidad Nacional de Córdoba, Argentina, FCA. http://www.infostat.com.ar. Accessed 6 Feb 2024

    Google Scholar 

  • Duddek P, Carminati A, Koebernick N, Ohmann L, Lovric G, Delzon S, Rodriguez-Dominguez CM, King A, Ahmed MA (2022) The impact of drought-induced root and root hair shrinkage on root–soil contact. Plant Physiol 189:1232–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Meinzer FC (2018) Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): a global data set reveals coordination and trade-offs among water transport traits. Tree Physiol 39:122–134

    Article  CAS  Google Scholar 

  • Galindo-Tovar ME, Ogata-Aguilar N, Arzate-Fernández AM (2008) Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genet Resour Crop Evol 55:441–450

    Article  Google Scholar 

  • Gambetta GA, Herrera JC, Dayer S, Feng Q, Hochberg U, Castellarin SD (2020) The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. J Exp Bot. https://doi.org/10.1093/jxb/eraa245

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrido M, Vergara S (2022) Lack of tradeoff between leaf hydraulic efficiency and safety across six contrasting water-stress tolerant fruit tree species. Agronomy 12(10):2351. https://doi.org/10.3390/agronomy12102351

    Article  CAS  Google Scholar 

  • Glenn DM (2010) Canopy gas exchange and water use efficiency of ‘Empire’ apple in response to particle film, irrigation, and microclimatic factors. J Amer Soc Hort Sci 135:25

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  PubMed  Google Scholar 

  • Hernandez-Santana V, Rodriguez-Dominguez C, Sebastian-Azcona J, Perez-Romero L, Diaz-Espejo A (2023) Role of hydraulic traits in stomatal regulation of transpiration under different vapour pressure deficits across five Mediterranean tree crops. J Exp Bot 74(15):4597–4612. https://doi.org/10.1093/jxb/erad157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath A, Christmann H, Laigret FJB (2008) Genetic diversity and relationships among Prunus cerasifera (cherry plum) clones. Botany 86:1311–1318

    Article  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants Annu. Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Johnson DM, Berry ZC, Baker KV, Smith DD, McCulloh KA, Domec J-C (2018) Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Funct Ecol 32:894–903

    Article  Google Scholar 

  • Kardel F, Wuyts K, Babanezhad M, Vitharana UWA, Wuytack T, Potters G, Samson R (2010) Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. Environ Pollut 158:788–794

    Article  CAS  PubMed  Google Scholar 

  • Kester DE, Gradziel TM, Grasselly C (1991) Almond (Prunus). International Society for Horticultural Science (ISHS), Leuven, pp 701–760

    Google Scholar 

  • Khalid MF, Vincent C, Morillon R, Anjum MA, Ahmad S, Hussain S (2021) Different strategies lead to a common outcome: different water-deficit scenarios highlight physiological and biochemical strategies of water deficit tolerance in diploid vs. tetraploid volkamer lemon. Tree Physiol. https://doi.org/10.1093/treephys/tpab074

    Article  PubMed  Google Scholar 

  • Klein T (2014) The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol 28:1313–1320

    Article  Google Scholar 

  • Kourgialas NN, Dokou Z (2021) Water management and salinity adaptation approaches of Avocado trees: a review for hot-summer Mediterranean climate. Agric Water Manag 252:106923

    Article  Google Scholar 

  • Ladizinsky G (1999) On the origin of almond. Genet Resour Crop Evol 46:143–147

    Article  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108

    Article  CAS  PubMed  Google Scholar 

  • Lei G, Zeng W, Huu Nguyen T, Zeng J, Chen H, Kumar Srivastava A, Gaiser T, Wu J, Huang J (2023) Relating soil-root hydraulic resistance variation to stomatal regulation in soil-plant water transport modeling. J Hydrol 617:128879. https://doi.org/10.1016/J.JHYDROL.2022.128879

    Article  Google Scholar 

  • Liu BH, Cheng L, Liang D, Zou YJ, Ma FW (2012) Growth, gas exchange, water-use efficiency, and carbon isotope composition of ‘Gale Gala’ apple trees grafted onto 9 wild Chinese rootstocks in response to drought stress. Photosynthetica 50:401–410

    Article  CAS  Google Scholar 

  • Ma X, Ma F, Li C, Mi Y, Bai T, Shu H (2010) Biomass accumulation, allocation, and water-use efficiency in 10 Malus rootstocks under two watering regimes. Agrofor Syst 80:283–294

    Article  Google Scholar 

  • Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199

    Article  Google Scholar 

  • Manzoni S, Vico G, Katul G, Palmroth S, Jackson RB, Porporato A (2013a) Hydraulic limits on maximum plant transpiration and the emergence of the safety–efficiency trade-off. New Phytol 198:169–178

    Article  PubMed  Google Scholar 

  • Manzoni S, Vico G, Porporato A, Katul G (2013b) Biological constraints on water transport in the soil–plant–atmosphere system. Adv Water Resour 51:292–304

    Article  Google Scholar 

  • Mars M (2003) Fig (Ficus carica L.) Genetic resources and breeding. International Society for Horticultural Science (ISHS), Leuven, pp 19–27

    Google Scholar 

  • Martínez-Vilalta J, Garcia-Forner N (2017) Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant, Cell Environ 40:962–976

    Article  PubMed  Google Scholar 

  • Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014) A new look at water transport regulation in plants. New Phytol 204:105–115

    Article  PubMed  Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Meinzer FC, McCulloh KA, Lachenbruch B, Woodruff DR, Johnson DM (2010) The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia 164:287–296

    Article  PubMed  Google Scholar 

  • Meinzer FC, Woodruff DR, Marias DE, Smith DD, McCulloh KA, Howard AR, Magedman AL (2016) Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status. Ecol Lett 19:1343–1352

    Article  PubMed  Google Scholar 

  • O’Neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. J Econ Entomol 95:1190–1194

    Article  PubMed  Google Scholar 

  • Opazo I, Toro G, Solis S, Salvatierra A, Franck N, Albornoz F, Pimentel P (2019) Late reduction on transpiration is an important trait for water deficit tolerance in interspecific Prunus rootstock hybrids. Theor Exp Plant Physiol. https://doi.org/10.1007/s40626-019-00162-w

    Article  Google Scholar 

  • Opazo I, Toro G, Salvatierra A, Pastenes C, Pimentel P (2020) Rootstocks modulate the physiology and growth responses to water deficit and long-term recovery in grafted stone fruit trees. Agric Water Manag 228:105897

    Article  Google Scholar 

  • Panigrahi P, Sharma RK, Hasan M, Parihar SS (2014) Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region. Agric Water Manag 140:48–60

    Article  Google Scholar 

  • Passioura JB (1983) Roots and drought resistance. Agric Water Manag 7:265–280

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray PM, Enrico L, Pausas JG, Vos AC, Buchmann N, Funes G, Quétier F, Quétier F, Hodgson JG, Thompson KA, Morgan HD, Steege H, Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino SO, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Poggi I, Polidori JJ, Gandoin JM, Paolacci V, Battini M, Albertini M, Améglio T, Cochard H (2007) Stomatal regulation and xylem cavitation in Clementine (Citrus clementina Hort) under drought conditions. J Hortic Sci Biotechnol 82(6):845–848. https://doi.org/10.1080/14620316.2007.11512316

    Article  Google Scholar 

  • R-Core-Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rieger M, Lo Bianco R, Okie WR (2003) Responses of Prunus ferganensis, Prunus persica and two interspecific hybrids to moderate drought stress. Tree Physiol 23:51–58

    Article  CAS  PubMed  Google Scholar 

  • Rowland L, Costa A, Galbraith D et al (2015) Death from drought in tropical forest triggered by hydraulics not carbon starvation. Nature 528:119–124

    Article  CAS  PubMed  Google Scholar 

  • Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J. (2021) _GGally: Extension to 'ggplot2'_. R package version 2.1.2, <https://CRAN.R-project.org/package=GGally>

  • Schölander PF, Hammel H, Bradstreet ED, Hemmingsen E (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  Google Scholar 

  • Scora RW (1975) On the history and origin of Citrus. Bull Torrey Bot Club 102:369–375

    Article  Google Scholar 

  • Sinclair T, Ludlow M (1986) Influence of soil water supply on the plant water balance of four tropical grain legumes. Funct Plant Biol 13:329–341

    Article  Google Scholar 

  • Skelton RP, West AG, Dawson TE (2015) Predicting plant vulnerability to drought in biodiverse regions using functional traits. Sci Total Environ 112:5744–5749

    CAS  Google Scholar 

  • Skelton R, Brodribb T, McAdam S, Mitchell P (2017) Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. New phytol 215:1399

    Article  CAS  PubMed  Google Scholar 

  • Sorek Y, Greenstein S, Hochberg U (2022) Seasonal adjustment of leaf embolism resistance and its importance for hydraulic safety in deciduous trees. Physiol Plantarum 174(5):e13785. https://doi.org/10.1111/ppl.13785

    Article  CAS  Google Scholar 

  • Tomás M, Medrano H, Pou A, Escalona JM, Martorell S, Ribas-CarbÓ M, Flexas J (2012) Water-use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level. Aust J Grape Wine Res 18:164–172

    Article  Google Scholar 

  • Trifilò P, Nardini A, Gullo MAL, Barbera PM, Savi T, Raimondo F (2015) Diurnal changes in embolism rate in nine dry forest trees: relationships with species-specific xylem vulnerability, hydraulic strategy and wood traits. Tree Physiol 35:694–705

    Article  PubMed  Google Scholar 

  • Tsuda M, Tyree MT (2000) Plant hydraulic conductance measured by the high pressure flow meter in crop plants. J Exp Bot 51:823–828

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Patiño S, Bennink J, Alexander J (1995) Dynamic measurements of roots hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46:83–94

    Article  CAS  Google Scholar 

  • Väänänen PJ, Osem Y, Cohen S, Grünzweig JM (2019) Differential drought resistance strategies of co-existing woodland species enduring the long rainless Eastern Mediterranean summer. Tree Physiol 40:305–320

    Article  Google Scholar 

  • Vadez V, Kholova J, Zaman-Allah M, Belko N (2013) Water: the most important “molecular” component of water stress tolerance research. Funct Plant Biol 40:1310–1322

    Article  PubMed  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Vandeleur RK, Sullivan W, Athman A, Jordans C, Gilliham M, Kaiser BN, Tyerman SD (2014) Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins. Plant Cell Environ 37:520–538

    Article  CAS  PubMed  Google Scholar 

  • Venkatramanan V, Shah S, Prasad R (2020) Global climate change and environmental policy. Springer, Singapore

    Book  Google Scholar 

  • Volschenk T (2021) Effect of water deficits on pomegranate tree performance and fruit quality – a review. Agric Water Manag 246:106499

    Article  Google Scholar 

  • Wei Z, Du T, Zhang J, Xu S, Cambre PJ, Davies WJ (2016) Carbon isotope discrimination shows a higher water use efficiency under alternate partial root-zone irrigation of field-grown tomato. Agric Water Manag 165:33–43

    Article  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38:171–186

    Article  CAS  Google Scholar 

  • Zheng S, Cui N, Gong D, Wang Y, Hu X, Feng Y, Zhang Y (2020) Relationship between stable carbon isotope discrimination and water use efficiency under deficit drip irrigation of kiwifruit in the humid areas of South China. Agric Water Manag 240:106300

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Agencia Nacional de Investigación y Desarrollo (ANID) project FONDECYT de Iniciación N° 11190174, project FSEQ210014, ANID R19A10003 and GORE O’Higgins.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and analysis. Material preparation and data collection were performed by IO, PP, AS, MO and GT. The first draft of the manuscript was written by IO and MG, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marco Garrido-Salinas.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1388 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opazo, I., Pimentel, P., Salvatierra, A. et al. Water stress tolerance is coordinated with water use capacity and growth under water deficit across six fruit tree species. Irrig Sci 42, 493–507 (2024). https://doi.org/10.1007/s00271-024-00915-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-024-00915-9

Navigation