Skip to main content
Log in

Isotopic U–Pb Age of Zircon (LA-ICP-MS Method) from Igneous Rocks of the Chorukh-Dairon W–Mo(–Cu–Au) Deposit (Tajikistan): First Evidences for Post-Collisional Ore Formation in the Kurama Segment of the Middle Tien Shan

  • GEOLOGY OF ORE DEPOSITS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The paper presents isotopic U–Pb zircon data (LA-ICP-MS method) for the main types of high-potassic intrusive rocks of the Chorukh-Dairon W–Mo(–Cu–Au) skarn deposit situated in the Kurama segment of the Middle Tien Shan near the largest porphyry Cu–Mo–Au deposits of the Almalyk mineralized cluster. Together with the other Au, W, Mo and Cu deposits, all these deposits are parts of the extended Late Paleozoic metallogenic belt of Tien Shan. The concordant isotopic U–Pb zircon data obtained for the rocks of successive intrusion phases in the Chorukh-Dairon pluton span from about 298 Ma to 290 Ma. This interval included crystallization of monzodiorite (295.1 ± 3.3 Ma), quartz syenite (294.7 ± 2.3 Ma), quartz monzonite (294.1 ± 2.1 Ma), and monzogranite (293.0 ± 3.0 Ma). These dates correspond to the pluton emplacement at the Late Carboniferous-Early Permian boundary and highlight its younger age compared to the productive high-potassic intrusions of the porphyry Cu–Mo–Au deposits in the Almalyk mineralized cluster, the latter assigned to the Late Carboniferous (about 337–313 Ma and partially to 308–297 Ma). By contrast to the latter, which were intruded in the subduction-related environment, the emplacement of the high-potassic rock of the Chorukh-Dairon pluton occurred in the transitional subduction-related to post-collisional environment or even under an actual post-collisional regime. This allows distinguishing two pulses of ore-bearing Carboniferous-Permian high-potassic calc-alkaline to shoshonitic series magmatism in the Middle Tien Shan. Consistently, there is a metallogenic evolution in the region that was expressed in the transition from porphyry Cu–Mo–Au deposits associated with subduction-related potassic magmatism, and likely evolving toward epithermal Au-Ag deposits, to essentially tungsten (W–Mo–Cu–Au) deposits associated with younger potassic magmatism occurring rather in the post-collisional environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. S. Kudrin, S. G. Soloviev, V. A. Stavinsky, and L. L. Kabardin, Int. Geol. Rev. 32, 930–941 (1990).

    Article  Google Scholar 

  2. A. Yakubchuk, A. Cole, R. Seltmann, and V. Shatov, in Integrated Methods for Discovery: Global Exploration in Twenty-First Century, Ed. by R. Goldfarb and R. Nielsen (Soc. Econom. Geol., Inc., 2002), Vol. 9, pp. 77–201.

    Google Scholar 

  3. Z. Cheng, Z. Zhang, F. Chai, T. Hou, M. Santosh, A. Turesebekov, and B. S. Nurtaev, Int. Geol. Rev. 60, 1–20 (2017).

    Article  Google Scholar 

  4. X.-B. Zhao, C.-J. Xue, G.-X. Chi, X.-X. Mo, B. Nurtaev, and G.-Z. Zhang, Ore Geol. Rev. 86, 807–824 (2017).

    Article  Google Scholar 

  5. S. G. Soloviev and S. G. Kryazhev, Ore Geol. Rev. 80, 79–102 (2017).

    Article  Google Scholar 

  6. R. Seltmann, D. Konopelko, G. Biske, F. Divaev, and S. Sergeev, J. Asian Earth Sci. 42, 821–838 (2011).

    Article  ADS  Google Scholar 

  7. R. Seltmann, T. M. Porter, and F. Pirajno, J. Asian Earth Sci. 79, 810–841 (2014).

    Article  ADS  Google Scholar 

  8. D. K. Vlasova and V. A. Zharikov, in Metasomatism and  Mineralization, Ed. by D. S. Korzhinskii and V. A. Zharikov (Nauka, Moscow, 1975), pp. 5–80 [in Russian].

    Google Scholar 

  9. S. G. Soloviev and N. N. Krivoschekov, Geochem. Int. 49, 691–710 (2011).

    Article  CAS  Google Scholar 

  10. Yu. Mamadzhanov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Tajikistan Institute of Geology, Dushanbe, 1995).

  11. V. N. Volkov, M. M. Arakelyants, and G. T. Tadzhibaev, Dokl. Tadzhik. SSR, Ser. Geol. 12, 40–47 (1990).

    Google Scholar 

  12. W. L. Griffin, W. J. Powell, N. J. Pearson, and S. Y. O’Reilly, GLITTER: Data Reduction Software for Laser Ablation ICP-MS, Ed. by P. Sylvester (Miner. Assoc. of Canada, 2008), Vol. 40, pp. 307–311.

    Google Scholar 

  13. J. Hiess, D. J. Condon, N. McLean, and S. R. Noble, Science 335, 1610–1614 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. J. Slama, J. Kosler, D. J. Condon, et al., Chem. Geol. 249 (1–2), 1–35 (2008).

    Article  ADS  CAS  Google Scholar 

  15. K. R. Ludwig, User’s Manual for Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Center Spec. Publ. No. 4 (Berkeley Geochronol. Center, Berkeley, CA, 2003).

  16. L. P. Black, S. L. Kamo, C. M. Allen, et al., Chem. Geol. 205, 115–140 (2004).

    Article  ADS  CAS  Google Scholar 

  17. J. S. Miller, J. E. Matzel, C. F. Miller, S. D. Burgess, and R. B. Miller, J. Volcanol. Geotherm. Res. 167 (1/4), 282–299 (2007).

    Article  ADS  CAS  Google Scholar 

  18. V. B. Sisson, T. L. Pavlis, S. M. Roeske, and D. J. Thorkelson, in Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin, Ed. by V. B. Sisson, S. M. Roeske, and T. L. Pavlis (Geol. Soc. Am., 2003), Vol. 371, pp. 1–18.

    Book  Google Scholar 

  19. J. A. Pearce and D. W. Peate, Annu. Rev. Earth Planet. Sci. 23, 251–285 (1995).

    Article  ADS  CAS  Google Scholar 

  20. M. Lustrino and M. Wilson, Earth-Sci. Rev. 81, 1–65 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Tyshkevich (Russian Central Geological Prospecting Institute (TsNIGRI), Moscow, Russia) for processing and preparation of zircon samples.

Funding

This work was supported by the scientific programs of the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences (Moscow, Russia), and the Institute of Mineralogy and Geochemistry, Siberian Branch, Russian Academy of Sciences (Novosibirsk, Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Soloviev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Melekestseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, S.G., Kryazhev, S.G., Semenova, D.V. et al. Isotopic U–Pb Age of Zircon (LA-ICP-MS Method) from Igneous Rocks of the Chorukh-Dairon W–Mo(–Cu–Au) Deposit (Tajikistan): First Evidences for Post-Collisional Ore Formation in the Kurama Segment of the Middle Tien Shan. Dokl. Earth Sc. (2024). https://doi.org/10.1134/S1028334X24600877

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1028334X24600877

Keywords:

Navigation