Skip to main content
Log in

On Derivation of Vlasov–Maxwell–Einstein Equations from the Principle of Least Action, the Hamilton–Jacobi Method, and the Milne–McCrea Model

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

In classical texts equations for gravitation and electromagnetic fields are proposed without deriving their right-hand sides [1–4]. In this paper, we derive the right-hand sides and analyze the energy–momentum tensor in the framework of Vlasov–Maxwell–Einstein equations and Milne–McCrea models. New models of accelerated expansion of the Universe without Einstein’s lambda are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. A. Fock, The Theory of Space, Time, and Gravitation (Pergamon, Oxford, 1964).

    Google Scholar 

  2. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry: Methods and Applications (Springer-Verlag, New York, 1984, 1985, 1990).

  3. Y. Choquet-Bruhat, Introduction to General Relativity, Black Holes and Cosmology (Oxford Univ. Press, New York, 2015).

    Google Scholar 

  4. C. Cercignani and G. M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications (Birkhäuser, Boston, 2002).

    Book  Google Scholar 

  5. V. V. Vedenyapin and M. A. Negmatov, “Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov’s form,” Theor. Math. Phys. 170 (3), 394–405 (2012).

    Article  MathSciNet  Google Scholar 

  6. V. V. Vedenyapin, M. A. Negmatov, and N. N. Fimin, “Vlasov-type and Liouville-type equations, their microscopic, energetic, and hydrodynamical consequences,” Izv. Math. 81 (3), 505–541 (2017).

    Article  MathSciNet  Google Scholar 

  7. V. V. Vedenyapin and M. A. Negmatov, “On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics: The Lagrange identity, the Godunov form, and critical mass,” J. Math. Sci. 202, 769–782 (2014).

    Article  MathSciNet  Google Scholar 

  8. V. V. Vedenyapin and M. A. Negmatov, “On the topology of steady-state solutions of hydrodynamic and vortex consequences of the Vlasov equation and the Hamilton–Jacobi method,” Dokl. Math. 87 (2), 240–244 (2013).

    Article  MathSciNet  Google Scholar 

  9. V. V. Vedenyapin, M. Yu. Voronina, and A. A. Russkov, “Derivation of the equations of electrodynamics and gravitation from the principle of least action,” Dokl. Phys. 65 (12), 413–417 (2020).

    Article  ADS  CAS  Google Scholar 

  10. Ye. Huanchun and P. Morrison, “Action principles for the Vlasov equations,” Phys. Fluids 4 (4), 771–777 (1992).

    Article  MathSciNet  Google Scholar 

  11. G. Rein and A. D. Rendall, “Smooth static solutions of the spherically symmetric Vlasov–Einstein system,” Ann. Inst. H. Poincaré Phys. Theor. 59, 383–397 (1993).

    Google Scholar 

  12. H. E. Kandrup and P. J. Morrison, “Hamiltonian structure of the Vlasov–Einstein system and the problem of stability for spherical relativistic star clusters,” Ann. Phys. 225, 114–166 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Pegoraro, F. Califano, G. Manfredi, and P. J. Morrison, “Theory and applications of the Vlasov equation,” Eur. Phys. J. D 69, 68 (2015).

    Article  ADS  Google Scholar 

  14. T. Okabe, P. J. Morrison, J. E. Friedrichsen III, and L. C. Shepley, “Hamiltonian dynamics of spatially-homogeneous Vlasov–Einstein systems,” Phys. Rev. D 84, 024011 (2011).

  15. A. J. Brizard, P. J. Morrison, J. W. Burby, L. de Guillebon, and M. Vittot, “Lifting of the Vlasov–Maxwell bracket by Lie-transform method,” J. Plasma Phys. 82, 905820608 (2016). https://doi.org/10.48550/arXiv.1606.06652

  16. E. Madelung, “Quantentheorie in hydrodynamischer form,” Z. Phys. 40, 322–326 (1926).

    Article  ADS  Google Scholar 

  17. V. V. Kozlov, “The hydrodynamics of Hamiltonian systems,” Moscow Univ. Mech. Bull. 38 (6), 9–23 (1983).

    Google Scholar 

  18. V. V. Kozlov, General Theory of Vortices (Udmurt. Univ., Izhevsk, 1998) [in Russian].

    Google Scholar 

  19. V. V. Vedenyapin, N. N. Fimin, and V. M. Chechetkin, “The generalized Friedmann model as a self-similar solution of Vlasov–Poisson equation system,” Eur. Phys. J. Plus 136, 670 (2021).

    Article  Google Scholar 

  20. V. V. Vedenyapin, V. I. Parenkina, and S. R. Svir-shchevskii, “Derivation of the equations of electrodynamics and gravity from the principle of least action,” Comput. Math. Math. Phys. 62 (6), 983–995 (2022).

    Article  MathSciNet  Google Scholar 

  21. V. V. Vedenyapin, “On derivation of equations of electrodynamics and gravitation from the principle of least action, the Hamilton–Jacobi method, and cosmological solutions,” Dokl. Math. 105 (3), 178–182 (2022).

    Article  MathSciNet  Google Scholar 

  22. W. H. McCrea and E. A. Milne, “Newtonian universes and the curvature of space,” Q. J. Math. 5, 73–80 (1934).

    Article  ADS  Google Scholar 

  23. Yu. N. Orlov and I. P. Pavlotsky, “BBGKY-hierarchies and Vlasov’s equations in postgalilean approximation,” Physica A 151, 318 (1988).

    Article  ADS  Google Scholar 

  24. A. D. Chernin, “Dark energy and universal antigravitation,” Phys.-Usp. 51 (3), 253–282 (2008).

    Article  Google Scholar 

  25. S. Capozziello and V. G. Gurzadyan, “Focus point on tensions in cosmology from early to late universe: The value of the Hubble constant and the question of dark energy,” Eur. Phys. J. Plus 138, 184 (2023).

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vedenyapin.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by I. Ruzanova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedenyapin, V.V. On Derivation of Vlasov–Maxwell–Einstein Equations from the Principle of Least Action, the Hamilton–Jacobi Method, and the Milne–McCrea Model. Dokl. Math. (2024). https://doi.org/10.1134/S1064562424701692

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1064562424701692

Keywords:

Navigation