Skip to main content
Log in

Phase analysis simulating the Takeda method to obtain a 3D profile of SARS-CoV-2 cells

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this work, we propose a morphologic analysis by means of the construction of 3D models of the SARS-CoV-2 VP (viral particles) with algorithms in Python and Matlab based on the processing of frames. To this aim, we simulate the Takeda method to induce periodicity and apply the Fourier transform to obtain the phase of objects under analysis. To this aim, we analyze several research works focused on infected tissues by SARS-CoV-2 virus culture cells, highlighting the obtained medical images of the virus from microscopy and tomography. We optimize the results by performing image processing (segmentation and periodic noise removal) in order to obtain an accurate ROI (Region of Interest) segmentation containing only information on SARS-CoV-2 cells. We apply our algorithm to these images (3D tomographic medical images) to simulate the Takeda method (which also filters the image), considering the periodicity induced by us in the image to carry out a phase unwrapping process. Finally, we use the image phase to focus on the body, center (RNA, Protein M-N), and spikes (Protein S) of the SARS-CoV-2 cells to identify them as characteristic elements of the SARS-CoV-2 virion morphology to build a 3D model based only in the metadata of clinical studies on cell cultures. The latter results in the construction of a mathematical, physical, biological, and numerical model of the SARS-CoV-2 virion, a tool with volumes, or 3D non-speculative or animated models, based only on medical images (3D tomography) in clinical tests, faithful to the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the Github repository.

Notes

  1. We include all the algorithms in our proposal in the Github repository

  2. We recall the two Matlab algorithms Results.m and FrameMask.m included in Github repository.

  3. The Python code 2DFrame\(\_\)Fit is included in Github repository.

References

  1. Organization WH (2023) SARS-CoV-2 variants. WHOhttps://www.who.int/es/activities/tracking-SARS-CoV-2-variants/

  2. University JH (2022) Center of Systems Science and Engineering at Johns Hopkins University American. CSSE-JHUhttps://www.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6

  3. for Disease Control C (2022) Prevention: Animals and COVID-19. CDChttps://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/animals.html

  4. Behera AK, Kumar PR, Priya MM, Ramesh T, Kalle R (2022) The impacts of covid-19 lockdown on wildlife in deccan plateau. Sci Total Environ 822(20):153268. https://doi.org/10.1016/j.scitotenv.2022.153268

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Baptista J, Blache D, Craddock N, Dalziel T, de Graaff N, Fernandes J, Green JR, H, S Kahn, Kelly, D, Lauber M, Maloney SK, Peachey B, Rodger I, Skuse J, Tilbrook AJ, Walker FR, Wall K, Zito S (2021) Impact of the covid-19 pandemic on the welfare of animals in australia. Front Vet Sci 7(28):621843 https://doi.org/10.3389/fvets.2020.621843

  6. Jaramillo-Núñez A, Arriaga-Hernández JA, Cuevas-Otahola B, Pérez-Mesa M, Sánchez-Rinza B (2021) Díagnostic software proposal for bone scan follow-up using false color based on the gammagrams analysis from gray tone histograms. Biomed Phys Eng Express 7(3):035002–111. https://doi.org/10.1088/2057-1976/abe680

    Article  Google Scholar 

  7. Arriaga-Hernández JA, Cuevas-Otahola B, Jaramillo-Núñez A, J, O-OJ, Morín-Castillo MM (2020) Optical-topological concepts in isomorphisms projecting bi-ronchi masks to obtain 3d profiles from objects in 2d images. App Opt 59(33):10464–10473. https://doi.org/10.1364/AO.401316

  8. Malacara D (2006) Opt Shop Test. John Wiley & Sons, Inc., New Jersey, USA. https://doi.org/10.1002/9780470135976

    Book  Google Scholar 

  9. Arriaga-Hernández JA, Cuevas-Otahola B, Jaramillo-Núñez A, J, O-OJ, Morín-Castillo MM (2020) Filter construction using ronchi masks and legendre polynomials to analyze the noise in aberrations by applying the irradíance transport equation. App Opt 59(13):3851–3860. https://doi.org/10.1364/AO.389716

  10. Bhattacharya S, Sirohi RS (1997) Amplitude checker grating from one-dimensional ronchi grating and itsapplication to array generation. App Opt 36(16):3745–3752. https://doi.org/10.1364/AO.36.003745

    Article  CAS  ADS  Google Scholar 

  11. Fornberg B (1998) A Practical Guide to Pseudospectral Methods. Cambridge University Press, Combridge, U.K

    Google Scholar 

  12. Zhang S (2010) Recent progresses on real-time 3d shape measurement using digital fringe projection techniques. Opt Lasers Eng 48(2):149–158. https://doi.org/10.1016/j.optlaseng.2009.03.008

    Article  ADS  Google Scholar 

  13. Panguluri SK, Mohan L (2021) Otsu thresholding based image fusion framework using contour-let transform. In: 2021 6th International Conference on Inventive Computation Technologies (ICICT), vol 6695, pp. 686–693. IEEE, Coimbatore, India. https://doi.org/10.1109/ICICT50816.2021.9358794

  14. Takeda M, Mutoh K (1983) Fourier transform profilometry for the automatic measurement of 3-d object shapes. App Opt 22(24):149–158. https://doi.org/10.1364/AO.22.003977

    Article  Google Scholar 

  15. Pratt WK (2007) Digital Image Processing: PIKS Scientific Inside. John Wiley & Sons, New Jersey, USA. https://doi.org/10.1002/0470097434

    Book  Google Scholar 

  16. Alassouli HM (2020) Signal, Audio and Image Processing. GmbH. & Co. KG, Munich, Germany

    Google Scholar 

  17. Cuevas-Otahola B, Arriaga-Hernández JA, Morín-Castillo MM, J, O-OJ, Vega-Salgado A (2021) Crystal 3D analysis in micrographs applied to cellular COVID anomalies identification. Paper presented at the MOMP 2021, Mexican Optics and Photonics Meeting, Puebla, Puebla, Mexico, 2021, pp 18–20 November 2021

  18. Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, Beaudoin-Bussières G, Symmes K, Benlarbi M, Ding S, Gasser R, Fink C, Chen Y, Tauzin A, Goyette G, Bourassa C, Medjahed M, Mack M, Chung K, Wilen CB, Dekaban GA, Dikeakos JD, Bruce EA, Kaufmann DE, Stamatatos L, McGuire AT, Richard J, Pazgier M, Bjorkman PJ, Mothes W, Finzi A, Kumar P, Uchil PD (2021) Live imaging of sars-cov-2 infection in mice reveals that neutralizing antibodies require fc function for optimal efficacy. Immunity 54(9):2143–2158. https://doi.org/10.1016/j.immuni.2021.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turoǎová B, Sikora M, Schürmann C, Hagen WJH, Welsch S, Blanc FEC, Hörner C, van-Zandbergen G, Landry J, Doimo-de-Azevedo NT, Mosalaganti S, Schwarz A, Covino R, Mühlebach MD, Hummer G, Locker JK, Beck M (2020) Live imaging of sars-cov-2 infection in mice reveals that neutralizing antibodies require fc function for optimal efficacy. Science 370(6513):203–208. https://doi.org/10.1126/science.abd5223

    Article  CAS  ADS  Google Scholar 

  20. Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, Lu JM, Peukes J, Xiong X, Kräusslich HG, Scheres SHW, Bartenschlager R, Briggs JAG (2020) Live imaging of sars-cov-2 infection in mice reveals that neutralizing antibodies require fc function for optimal efficacy. Nature 588:498–502. https://doi.org/10.1038/s41586-020-2665-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Frese N, Schmerer P, Wortmann M, Schörmann M, König M, Westphal M, Weber F, Sudhoff H, Gölzhäuser A (2021) Imaging of sars-cov-2 infected vero e6 cells by helium ion microscopy. Beilstein J Nanotech 12(13):172–179. https://doi.org/10.3762/bjnano.12.13

    Article  CAS  Google Scholar 

  22. AlZu’bi S, Shehab M, Al-Ayyoub M, Jararweh Y, Gupta B (2020) Parallel implementation for 3d medical volume fuzzy segmentation. Pattern Recognit Lett 130:312–318. https://doi.org/10.1016/j.patrec.2018.07.026

    Article  ADS  Google Scholar 

  23. Chu V, Hamarneh G (2006) Matlab-itk interface for medical image filtering, segmentation, and registration. In: Reinhardt JM, Pluim JPW (eds) Medical Imaging 2006: Image Processing, vol 6144. SPIE, San Diego, California, United States, pp 61443–18. https://doi.org/10.1117/12.652628

    Chapter  Google Scholar 

  24. George E, Liacouras P, Rybicki FJ, Mitsouras D (2017) Measuring and establishing the accuracy and reproducibility of 3d printed medical models. RadioGraphics 37(5):1424–1450. https://doi.org/10.1148/rg.2017160165

    Article  PubMed  Google Scholar 

  25. Ammanuel S, Brown I, Uribe J (2019) Creating 3d models from radiologic images for virtual reality medical education modules. J Med Syst 43(166):166. https://doi.org/10.1016/j.immuni.2021.08.015

    Article  CAS  PubMed  Google Scholar 

  26. González-Izard S, Sánchez-Torres R, Alonso-Plaza, Juanes-Méndez JA, García-Peñalvo FJ (2021) Nextmed: Automatic imaging segmentation, 3d reconstruction, and 3d model visualization platform using augmented and virtual reality. Sensors 20(2962):2962–119. https://doi.org/10.3390/s20102962

  27. Smitha TV, Madhura S, Brundha R (2021) 2d image-based higher-order meshing for 3d modelling in matlab. IOP Conf Ser Mat Sci Eng 1070(1):012017–18. https://doi.org/10.1088/1757-899X/1070/1/012017

    Article  Google Scholar 

  28. Mastronarde DN, Held SR (2017) Automated tilt series alignment and tomographic reconstruction in imod. J Struct Bio 197(2):102–113. https://doi.org/10.1016/j.jsb.2016.07.011

    Article  Google Scholar 

  29. Pelt DM, Batenburg KJ, Sethian JA (2018) Improving tomographic reconstruction from limited data using mixed-scale dense convolutional neural networks. J Imag 4(11):128. https://doi.org/10.3390/jimaging4110128

    Article  Google Scholar 

  30. Jähne B (2005) Digital Image Processing. Springer, Heidelberg, Germany. https://doi.org/10.1007/3-540-27563-0

    Book  Google Scholar 

  31. Schultz SM (2007) Using matlab to help teach fourier optics. In: Awwal AAS, Iftekharuddin KM, Javidi B (eds) Optical Engineer- 895Optical Engineering + Applications, vol 6695. SPIE, San Diego, California, United States, pp 593–660. https://doi.org/10.1117/12.735889

    Chapter  Google Scholar 

  32. Nagy JG, Palmer K, Perrone L (2004) Iterative methods for image deblurring: A matlab object-oriented approach. Numer Algorithms 36:73–93. https://doi.org/10.1023/B:NUMA.0000027762.08431.64

    Article  MathSciNet  ADS  Google Scholar 

  33. Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72(1):156–160. https://doi.org/10.1364/JOSA.72.000156

    Article  ADS  Google Scholar 

  34. Fienup JR, Marron JC, Schulz TJ, Seldin JH (1993) Hubble space telescope characterized by using phase-retrieval algorithms. App Opt 32(10):1747–1767. https://doi.org/10.1364/AO.32.001747

    Article  CAS  ADS  Google Scholar 

  35. Ichikawa K, Lohmann AL, Takeda M (1988) Phase retrieval based on the irradiance transport equation and the fourier transform method: experiments. App Opt 27(16):3433–3436. https://doi.org/10.1364/AO.27.003433

    Article  CAS  ADS  Google Scholar 

  36. Arriaga-Hernández JA, Cuevas-Otahola B, Jaramillo-Núñez A, J O-OJ, Morín-Castillo MM (2019) Two-dimensional legendre polynomials as a basis for interpolation of data to optimize the solution of the irradíance transport equation analyzed as a boundary problem on surfaces testing. App Opt 58(18):5057–5066. https://doi.org/10.1364/AO.58.005057

  37. Yin X, Ng BW-H, Abbott D (2012) Feature Extraction and Selection. In Terahertz Imaging for Biomedical Applications. Springer, Adelaide, Australia. https://doi.org/10.1007/978-1-4614-1821-4

  38. Seeram E (2016) Computed Tomography: Physical Principles, Clinical Applications, and Quality Control. Elsevier, Sydney, Australia. https://doi.org/10.1148/radiology.194.3.782

    Book  Google Scholar 

  39. Powsner RA, Palmer MR, Powsner ER (2022) Essentials of Nuclear Medicine Physics, Instrumentation, and Radíation Biology. Willey-Blackwell, Boston, USA. https://doi.org/10.1148/radiology.194.3.782

    Book  Google Scholar 

  40. Vetterli M, Kovačević J, Goyal VK (2018) Foundations of Signal Processing. Cambridge University Press, Cambridge, USA. https://doi.org/10.1017/CBO9781139839099

    Book  Google Scholar 

  41. Arendt W, Schleich WP (2009) Mathematical Analysis of Evolution, Information, and Complexity. Wiley-VCH Verlag GmbH & Co. KGaA, Ulm, Germany. https://doi.org/10.1002/9783527628025

    Book  Google Scholar 

  42. Masters PS (2006) The molecular biology of coronaviruses. Adv Virus Res 66:193–292. https://doi.org/10.1016/S0065-3527(06)66005-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT (2021) Sars-cov-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbio 61(3):180–202. https://doi.org/10.1002/jobm.202000537

    Article  CAS  Google Scholar 

  44. Morín-Castillo MM, Arriaga-Hernández J, Cuevas-Otahola B, Oliveros-Oliveros JJ (2022) Analysis of dipolar sources in the solution of the electroencephalographic inverse problem. Mathematics 11(10):1926–122. https://doi.org/10.1016/j.patrec.2018.07.026

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CONACYT (Consejo Nacional de Ciencia y Tecnologia, México) and the Benemerita Universidad Autonoma de Puebla (BUAP) for the support given during this research work. Special thanks to Dra. Lilia Cedillo Ramírez, Dr. Ygnacio Martínez Laguna and Dr. Jorge Antonio Yáñez Santos for their collaboration and comments. We also thank the technical staff of the Biomolecular Detection Centre at BUAP: M.C. Jose Sergio Tepanecatl Xihuitl, M.C. Elda Carreon Moreno, M. C. Cristina Lara Ochoa, and David Zenteno Diaz for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bolivia Cuevas-Otahola.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2003 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arriaga-Hernández, J., Cuevas-Otahola, B., Oliveros-Oliveros, J.J. et al. Phase analysis simulating the Takeda method to obtain a 3D profile of SARS-CoV-2 cells. Pattern Anal Applic 27, 16 (2024). https://doi.org/10.1007/s10044-024-01225-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10044-024-01225-8

Keywords

Navigation