Skip to main content
Log in

A spatio-temporal binary grid-based clustering model for seismicity analysis

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper presents a spatio-temporal binary grid-based clustering model for determining complex earthquake clusters with different shapes and heterogeneous densities present in a catalog. The 3D occurrence of earthquakes is mapped into a 2D-low memory sparse matrix through a grid mechanism in the binary domain with consideration of spatio-temporal attributes. Then, image-transformation of a non-empty sets binary feature matrix, a clustering strategy is implemented with logical AND operator as similarity measure among the binary vectors. This approach is applied to solve the problem of seismicity declustering which separates the clustering and non-clustering patterns of seismicity for real-world earthquake catalogs of Japan (1972–2020) and Eastern Mediterranean (1966–2020). Results demonstrate that the proposed method has a significant reduction in both computation and memory footprint with few tuning parameters. Background earthquakes have an impression on the homogeneous Poisson process with fair memory-less characteristics in the time domain as evident from graphical and statistical analysis. Overall seismicity and observed background activity both have similar multi-fractal behavior with a deviation of \(\pm 0.04\). The comparative analysis is carried out with benchmark declustering models: Gardner–Knopoff, Uhrhammer, Gruenthal window-based method, and Reasenberg’s approach, and superior performance of the proposed method is found in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Algorithm 2
Fig. 8
Algorithm 3
Algorithm 4
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The earthquake catalogs used in this study are publicly available at the official website of the United States Geological Survey [https://earthquake.usgs.gov/earthquakes/search/].

References

  1. Ezugwu AE, Ikotun AM, Oyelade OO, Abualigah L, Agushaka JO, Eke CI, Akinyelu AA (2022) A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng Appl Artif Intell 110:104743

    Google Scholar 

  2. Cao L, Zhao Z, Wang D (2023) Clustering algorithms. In: target recognition and tracking for millimeter wave radar in intelligent transportation, pp 97–122. Springer

  3. Gurunlu B, Ozturk S (2022) Efficient approach for block-based copy-move forgery detection. In: Smart trends in computing and communications: proceedings of smartcom 2021, pp 167–174. Springer

  4. Balaha HM, Antar ER, Saafan MM, El-Gendy EM (2023) A comprehensive framework towards segmenting and classifying breast cancer patients using deep learning and aquila optimizer. J Ambient Intell Human Comput 14(6):7897–7917

    Google Scholar 

  5. Krishnappa SG, Reddy KUK (2023) Breast cancer classification from histopathological images using dual deep network architecture. J Ambient Intell Human Comput 14(6):7885–7896

    Google Scholar 

  6. Gupta V (2023) Application of chaos theory for arrhythmia detection in pathological databases. Int J Med Eng Inf 15(2):191–202

    Google Scholar 

  7. Murali P, Revathy R, Balamurali S, Tayade A (2020) Integration of rnn with garch refined by whale optimization algorithm for yield forecasting: a hybrid machine learning approach. J Ambient Intell Human Comput, 1–13

  8. Sengar S, Liu X (2020) Ensemble approach for short term load forecasting in wind energy system using hybrid algorithm. J Ambient Intell Human Comput 11:5297–5314

    Google Scholar 

  9. Nayak JR, Shaw B, Sahu BK (2023) A fuzzy adaptive symbiotic organism search based hybrid wavelet transform-extreme learning machine model for load forecasting of power system: a case study. J Ambient Intell Human Comput 14(8):10833–10847

    Google Scholar 

  10. Saad OM, Hafez AG, Soliman MS (2020) Deep learning approach for earthquake parameters classification in earthquake early warning system. IEEE Geosci Remote Sens Lett 18(7):1293–1297

    ADS  Google Scholar 

  11. Wang C-Y, Huang T-C, Wu Y-M (2022) Using LSTM neural networks for onsite earthquake early warning. Seismol Soc Am 93(2A):814–826

    Google Scholar 

  12. Taylor NC, Kruger K, Bekker A (2023) A human cyber-physical system for human-centered computing in seafaring. J Ambient Intell Human Comput 14(6):7871–7884

    Google Scholar 

  13. Sahoh B, Choksuriwong A (2023) The role of explainable artificial intelligence in high-stakes decision-making systems: a systematic review. J Ambient Intell Human Comput 14(6):7827–7843

    Google Scholar 

  14. Maitre J, Bouchard K, Gaboury S (2023) Data filtering and deep learning for enhanced human activity recognition from UWB radars. J Ambient Intell Human Comput 14(6):7845–7856

    Google Scholar 

  15. Berhich A, Belouadha F-Z, Kabbaj MI (2023) An attention-based LSTM network for large earthquake prediction. Soil Dyn Earthq Eng 165:107663

    Google Scholar 

  16. Kagan YY, Jackson DD (1991) Long-term earthquake clustering. Geophys J Int 104(1):117–133

    ADS  Google Scholar 

  17. Utsu T, Ogata Y, Ritsuko S et al (1995) The centenary of the OMORI formula for a decay law of aftershock activity. J Phys Earth 43(1):1–33

    Google Scholar 

  18. Omori F (1894) On the after-shocks of earthquakes vol 7. The University

  19. Utsu T (1957) Magnitude of earthquakes and occurrence of their aftershocks. Zisin 10:35–45

    Google Scholar 

  20. Wang Q, Guo Y, Yu L, Li P (2017) Earthquake prediction based on spatio-temporal data mining: an LSTM network approach. IEEE Transact Emerg Top Comput 8(1):148–158

    Google Scholar 

  21. Asencio-Cortes G, Martinez-Alvarez F, Morales-Esteban A, Reyes J (2016) A sensitivity study of seismicity indicators in supervised learning to improve earthquake prediction. Knowl Based Syst 101:15–30

    Google Scholar 

  22. Du H, Zhou Y, Ma Y, Wang S (2021) Astrologer: exploiting graph neural hawkes process for event propagation prediction with spatio-temporal characteristics. Knowl Based Syst 228:107247

    Google Scholar 

  23. Agrawal K, Garg S, Sharma S, Patel P (2016) Development and validation of optics based spatio-temporal clustering technique. Inf Sci 369:388–401

    Google Scholar 

  24. Rocha JAM, Times VC, Oliveira G, Alvares LO, Bogorny V (2010) Db-smot: a direction-based spatio-temporal clustering method. In: 2010 5th IEEE international conference intelligent systems, pp 114–119. IEEE

  25. Fitrianah D, Hidayanto AN, Fahmi H, Gaol JL, Arymurthy AM (2015) ST-agrid: a spatio temporal grid density based clustering and its application for determining the potential fishing zones. Int J Softw Eng Appl 9(1):13–26

    Google Scholar 

  26. Kisilevich S, Mansmann F, Nanni M, Rinzivillo S (2009) Spatio-temporal clustering. In: Data mining and knowledge discovery handbook, pp 855–874. Springer

  27. Georgoulas G, Konstantaras A, Katsifarakis E, Stylios CD, Maravelakis E, Vachtsevanos GJ (2013) seismic-mass density-based algorithm for spatio-temporal clustering. Exp Syst Appl 40(10):4183–4189

    Google Scholar 

  28. Nanda SJ, Panda G (2015) Design of computationally efficient density-based clustering algorithms. Data Knowl Eng 95:23–38

    Google Scholar 

  29. Ansari A, Firuzi E, Etemadsaeed L (2015) Delineation of seismic sources in probabilistic seismic-hazard analysis using fuzzy cluster analysis and monte carlo simulation. Bull Seismol Soc Am 105(4):2174–2191

    Google Scholar 

  30. Rehman K, Burton PW, Weatherill GA (2014) K-means cluster analysis and seismicity partitioning for Pakistan. J Seismol 18(3):401–419

    Google Scholar 

  31. Morales-Esteban A, Martinez-Alvarez F, Scitovski S, Scitovski R (2014) A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Comput Geosci 73:132–141

    ADS  Google Scholar 

  32. Morales-Esteban A, Martinez-Alvarez F, Troncoso A, Justo J, Rubio-Escudero C (2010) Pattern recognition to forecast seismic time series. Exp Syst Appl 37(12):8333–8342

    Google Scholar 

  33. Ida Y, Ishida M (2022) Analysis of seismic activity using self-organizing map: implications for earthquake prediction. Pure Appl Geophys 179(1):1–9

    ADS  Google Scholar 

  34. Telesca L, Thai AT, Lovallo M, Cao DT (2022) Visibility graph analysis of reservoir-triggered seismicity: the case of song tranh 2 hydropower, vietnam. Entropy 24(11):1620

    PubMed  PubMed Central  ADS  Google Scholar 

  35. Malakar S, Rai AK (2022) Seismicity clusters and vulnerability in the Himalayas by machine learning and integrated MCDM models. Arab J Geosci 15(22):1674

    Google Scholar 

  36. Golay J, Kanevski M, Orozco CDV, Leuenberger M (2014) The multipoint Morisita index for the analysis of spatial patterns. Physica A Stat Mech Appl 406:191–202

    MathSciNet  Google Scholar 

  37. Corral A (2006) Dependence of earthquake recurrence times and independence of magnitudes on seismicity history. Tectonophysics 424(3–4):177–193

    ADS  Google Scholar 

  38. Poulos A, Monsalve M, Zamora N, de la Llera JC (2019) An updated recurrence model for chilean subduction seismicity and statistical validation of its poisson nature. Bull Seismol Soc Am 109(1):66–74

    Google Scholar 

  39. Talbi A, Nanjo K, Satake K, Zhuang J, Hamdache M (2013) Comparison of seismicity declustering methods using a probabilistic measure of clustering. J Seismol 17(3):1041–1061

    Google Scholar 

  40. Batac R, Kantz H (2014) Observing spatio-temporal clustering and separation using interevent distributions of regional earthquakes. Nonlinear Process Geophys 21(4):735–744

    ADS  Google Scholar 

  41. Van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering. Commun Online Resourc Stat Seism Anal. https://doi.org/10.5078/corssa-52382934

    Article  Google Scholar 

  42. Azak TE, Kalafat D, Sesetyan K, Demircioglu M (2018) Effects of seismic declustering on seismic hazard assessment: a sensitivity study using the turkish earthquake catalogue. Bull Earthq Eng 16(8):3339–3366

    Google Scholar 

  43. Petersen MD, Moschetti MP, Powers PM, Mueller CS, Haller KM, Frankel AD, Zeng Y, Rezaeian S, Harmsen SC, Boyd OS et al (2015) The 2014 united states national seismic hazard model. Earthq Spectra 31(1–suppl):1–30

    Google Scholar 

  44. Alexandridis A, Chondrodima E, Efthimiou E, Papadakis G, Vallianatos F, Triantis D (2013) Large earthquake occurrence estimation based on radial basis function neural networks. IEEE Transact Geosci Remote Sens 52(9):5443–5453

    ADS  Google Scholar 

  45. Ebel JE, Chambers DW, Kafka AL, Baglivo JA (2007) Non-poissonian earthquake clustering and the hidden markov model as bases for earthquake forecasting in california. Seismol Res Lett 78(1):57–65

    Google Scholar 

  46. Gardner J, Knopoff L (1974) Is the sequence of earthquakes in southern California, with aftershocks removed, poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Google Scholar 

  47. Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res Solid Earth 90(B7):5479–5495

    Google Scholar 

  48. Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences. J Am Stat Assoc 97(458):369–380

    MathSciNet  Google Scholar 

  49. Zaliapin I, Gabrielov A, Keilis-Borok V, Wong H (2008) Clustering analysis of seismicity and aftershock identification. Phys Rev Lett 101(1):018501

    PubMed  ADS  Google Scholar 

  50. Vijay RK, Nanda SJ (2017) Tetra-stage cluster identification model to analyse the seismic activities of Japan, Himalaya and Taiwan. IET Signal Process 12(1):95–103

    Google Scholar 

  51. Vijay RK, Nanda SJ (2019) A variable e-DBSCAN algorithm for declustering earthquake catalogs. In: Soft computing for problem solving, pp 639–651. Springer

  52. Vijay RK, Nanda SJ (2019) Shared nearest neighborhood intensity based declustering model for analysis of spatio-temporal seismicity. IEEE J Select Top Appl Earth Observ Remote Sens 12(5):1619–1627

    ADS  Google Scholar 

  53. Vijay RK, Nanda SJ (2021) Seismicity analysis using space-time density peak clustering method. Pattern Anal Appl 24(1):181–201

    Google Scholar 

  54. Sharma A, Nanda SJ, Vijay RK (2021) A model based on fuzzy c-means with density peak clustering for seismicity analysis of earthquake prone regions. In: Soft computing for problem solving: proceedings of SocProS 2020, vol 2, pp 173–185. Springer

  55. Sharma A, Vijay RK, Nanda SJ (2023) Identification and spatio-temporal analysis of earthquake clusters using som-dbscan model. Neural Comput Appl 35(11):8081–8108

    Google Scholar 

  56. Aden-Antoniow F, Frank W, Seydoux L (2022) An adaptable random forest model for the declustering of earthquake catalogs. J Geophys Res Solid Earth 127(2):2021–023254

    Google Scholar 

  57. Vijay RK, Nanda SJ (2022) Sliding temporal window-based feature extraction with k-means clustering for zagros (iran) seismicity analysis. In: 2022 international conference on connected systems & intelligence (CSI), pp 1–10. IEEE

  58. Cho N, Tiampo K, Bhattacharya P, Shcherbakov R, Chen C, Li H, Klein W (2010) Declustering seismicity using the thirumalai-mountain metric. In: AGU fall meeting abstracts

  59. Vijay R, Nanda SJ (2017) Declustering of an earthquake catalog based on ergodicity using parallel grey wolf optimization. In: IEEE congress on evolutionary computation (CEC), pp 1667–1674

  60. Vijay RK, Nanda SJ (2019) A quantum grey wolf optimizer based declustering model for analysis of earthquake catalogs in an ergodic framework. J Comput Sci 36:101019

    Google Scholar 

  61. Sharma A, Nanda SJ, Vijay RK (2021) A binary NSGA-ii model for de-clustering seismicity of turkey and Chile. In: 2021 IEEE congress on evolutionary computation (CEC), pp 981–988. IEEE

  62. Li M, Stolz M, Feng Z, Kunert M, Henze R, Kuckay F (2018) An adaptive 3D grid-based clustering algorithm for automotive high resolution radar sensor. In: 2018 IEEE International conference on vehicular electronics and safety (ICVES), pp 1–7. IEEE

  63. Chen J, Lin X, Xuan Q, Xiang Y (2019) Fgch: a fast and grid based clustering algorithm for hybrid data stream. Appl Intell 49:1228–1244

    Google Scholar 

  64. Starczewski A, Scherer MM, Ksiazek W, Debski M, Wang L (2021) A novel grid-based clustering algorithm. J Artif Intell Soft Comput Res 11

  65. Catalog SE USGS. https://earthquake.usgs.gov/earthquakes/search/ [Accessed: (November 22, 2022)]

  66. Sornette D, Sornette A (1999) General theory of the modified Gutenberg–Richter law for large seismic moments. Bull Seismol Soc Am 89(4):1121–1130

    Google Scholar 

  67. Mignan A (2012) Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude. J Geophys Res: Solid Earth 117(B8)

  68. Goh K-I, Barabasi A-L (2008) Burstiness and memory in complex systems. EPL (Europhysics Letters) 81(4):48002

    MathSciNet  ADS  Google Scholar 

  69. Uhrhammer R (1986) Characteristics of northern and central California seismicity. Earthq Notes 57(1):21

    Google Scholar 

  70. Wiemer S (2001) A software package to analyze seismicity: Zmap. Seismol Res Lett 72(3):373–382

    Google Scholar 

  71. Birant D, Kut A (2007) St-dbscan: an algorithm for clustering spatial-temporal data. Data Knowl Eng 60(1):208–221

    Google Scholar 

  72. Wang M, Wang A, Li A (2006) Mining spatial-temporal clusters from geo-databases. In: International conference on advanced data mining and applications, pp 263–270. Springer

  73. Joshi D, Samal A, Soh L-K (2013) Spatio-temporal polygonal clustering with space and time as first-class citizens. GeoInformatica 17(2):387–412

    Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar Vijay.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare that is relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijay, R.K., Nanda, S.J. & Sharma, A. A spatio-temporal binary grid-based clustering model for seismicity analysis. Pattern Anal Applic 27, 14 (2024). https://doi.org/10.1007/s10044-024-01234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10044-024-01234-7

Keywords

Navigation