Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Developments in Nanotechnology and Immunotherapy for the Diagnosis and Treatment of Pancreatic Cancer

In Press, (this is not the final "Version of Record"). Available online 23 February, 2024
Author(s): Komal Sindhi and Abhishek Kanugo*
Published on: 23 February, 2024

DOI: 10.2174/0113892010284407240212110745

Price: $95

Abstract

Pancreatic cancer kills millions of people worldwide each year and is one of the most prevalent causes of mortality that requires prompt therapy. A large number of people who have pancreatic cancer are detected at an advanced stage, with incurable and drug-resistant tumors. Hence the overall survival rate of pancreatic cancer is less. The advance phase of this cancer is generated because of the expression of the cancer-causing gene, inactivation of the tumorsuppressing gene, and deregulation of molecules in different cellular signalling pathways. The prompt diagnosis through the biomarkers significantly evades the progress and accelerates the survival rates. The overexpression of Mesothelin, Urokinase plasminogen activator, IGFR, Epidermal growth factor receptor, Plectin-1, Mucin-1 and Zinc transporter 4 were recognized in the diagnosis of pancreatic cancer. Nanotechnology has led to the development of nanocarriersbased formulations (lipid, polymer, inorganic, carbon-based and advanced nanocarriers) that overcome the hurdles of conventional therapy, chemotherapy and radiotherapy, which causes toxicity to adjacent healthy tissues. Biocompatibility, toxicity and large-scale manufacturing are the hurdles associated with the nanocarriers-based approaches. Currently, Immunotherapy-based techniques have emerged as an efficient therapeutic alternative for the prevention of cancer. Immunological checkpoint targeting techniques have demonstrated significant efficacy in human cancers. Recent advancements in checkpoint inhibitors, adoptive T cell therapies, and cancer vaccines have shown potential in overcoming the immune evasion mechanisms of pancreatic cancer cells. Combining these immunotherapeutic approaches with nanocarriers holds great promise in enhancing the antitumor response and improving patient survival.

Keywords: Pancreatic cancer, nanoparticles, immunotherapy, biomarkers, theranostic, immune checkpoint inhibitors.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy