Skip to main content
Log in

Discrimination of the acute pulmonary embolism subtypes based on the novel MAPH score

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Acute pulmonary embolism (APE) is a thromboembolism situation that can be central or peripheral. APE risk analysis and classification are essential for therapy planning. Our aim is to determine the novel MAPH score (including age, mean platelet volume (MPV), total protein, and hematocrit parameters) that can distinguish APE subtypes. Our retrospective cohort analysis includes 97 APE patients referred to the emergency medicine department who underwent pulmonary computed tomography angiography (CTA) in 24 h from 2020 to 2022. The hospital information system provided demographic, clinical, laboratory, and pulmonary CTA data. APE was classified into central (46 patients) and peripheral (51 patients) depending on the area of vascular involvement. The central APE group had higher hypertension (HT) (67.4%) and atrial fibrillation (AF) (39.1%) incidence than the peripheral APE group (all p values > 0.05). The central APE had higher total protein and platelet counts (p = 0.003 and p = 0.036), but peripheral APE had higher troponin values (p = 0.029). Central APE had 2.17 ± 0.85 MAPH and peripheral APE 1.76 ± 0.95 (p = 0.029). HT, AF, platelet count, and MAPH score differed significantly in univariate logistic regression (all p values < 0.05). However, only platelet count varied in multivariate logistic regression (p = 0.042). ROC curve analysis revealed that the MAPH score predicts central APE with 83% sensitivity and 45% specificity at a cut-off level of 1.5. The new MAPH score as an indicator of blood viscosity may distinguish between central and peripheral APE. Our result is significant, especially for centers with limited examinations, as it may accelerate the diagnosis and treatment processes. We think that our results might guide future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data and analyses related to our study can be accessed at a reasonable request from the corresponding author.

References

  1. Konstantinides SV, Meyer G, Becattini C, ESC Scientific Document Group et al (2020) ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 41(4):543–603

    Article  PubMed  Google Scholar 

  2. Raskob GE, Angchaisuksiri P, Blanco AN et al (2014) Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vasc Biol 34:23632371

    Article  Google Scholar 

  3. Pollack CV, Schreiber D, Goldhaber SZ et al (2011) Clinical characteristics, management, and outcomes of patients diagnosed with acute pulmonary embolism in the emergency department: initial report of EMPEROR (Multicenter Emergency Medicine Pulmonary Embolism in the Real World Registry). J Am Coll Cardiol 57:700706

    Article  Google Scholar 

  4. Wendelboe AM, Raskob GE (2016) Global burden of thrombosis: epidemiologic aspects. Circ Res 118:13401347

    Article  Google Scholar 

  5. Keller K, Hobohm L, Ebner M et al (2020) Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany. Eur Heart J 41:522529

    Article  Google Scholar 

  6. de Miguel-Diez J, Jimenez-Garcia R, Jimenez D et al (2014) Trends in hospital admissions for pulmonary embolism in Spain from 2002 to 2011. Eur Respir J 44:942950

    Google Scholar 

  7. Dentali F, Ageno W, Pomero F et al (2016) Time trends and case fatality rate of in-hospital treated pulmonary embolism during 11 years of observation in Northwestern Italy. Thromb Haemost 115(2):399–405

    Article  PubMed  Google Scholar 

  8. Lehnert P, Lange T, Moller CH et al (2018) Acute pulmonary embolism in a national Danish cohort: increasing incidence and decreasing mortality. Thromb Haemost 118:539546

    Google Scholar 

  9. Lutsey PL, Zakai NA (2023) Epidemiology and prevention of venous thromboembolism. Nat Rev Cardiol 20(4):248–262

    Article  PubMed  Google Scholar 

  10. Cimini LA, Candeloro M, Pływaczewska M et al (2023) Prognostic role of different findings at echocardiography in acute pulmonary embolism: a critical review and meta-analysis. ERJ Open Res 9(2):00641–02022

    Article  PubMed  PubMed Central  Google Scholar 

  11. Barco S, Valerio L, Gallo A et al (2021) Global reporting of pulmonary embolism-related deaths in the World Health Organization mortality database: vital registration data from 123 countries. Res Pract Thromb Haemost 5(5):e12520

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leonhardi J, Bailis N, Lerche M et al (2023) Computed tomography embolus texture analysis as a prognostic marker of acute pulmonary embolism. Angiology 74(5):461–471

    Article  CAS  PubMed  Google Scholar 

  13. Albrecht MH, Bickford MW, Nance JW Jr et al (2017) State-of-the-art pulmonary CT angiography for acute pulmonary embolism. Am J Roentgenol 208:495–504

    Article  Google Scholar 

  14. Bae JY, Murugiah K (2023) Invasive pulmonary angiogram performance and interpretation in the diagnosis of pulmonary thromboembolic disease. Interv Cardiol Clin 12(3):299–307

    PubMed  PubMed Central  Google Scholar 

  15. Alonso Martinez JL, Anniccherico Sánchez FJ, Urbieta Echezarreta MA et al (2016) Central versus peripheral pulmonary embolism: analysis of the impact on the physiological parameters and long-term survival. N Am J Med Sci 8(3):134–142

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumar A, Cannon CP (2009) Acute coronary syndromes: diagnosis and management, part I. Mayo Clin Proc 84(10):917–938

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koupenova M, Kehrel BE, Corkrey HA et al (2017) Thrombosis and platelets: an update. Eur Heart J 38(11):785–791

    CAS  PubMed  Google Scholar 

  18. Weisel JW, Litvinov RI (2019) Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemostasis 17(2):271–282

    Article  CAS  Google Scholar 

  19. Hammons L, Filopei J, Steiger D et al (2019) A narrative review of red blood cell distribution width as a marker for pulmonary embolism. J Thromb Thrombolysis 48(4):638–647

    Article  PubMed  Google Scholar 

  20. Aleman MM, Walton BL, Byrnes JR et al (2014) Fibrinogen and red blood cells in venous thrombosis. Thromb Res 133:S38-40

    Article  PubMed  PubMed Central  Google Scholar 

  21. Atici AG, Kayhan S, Aydin D et al (2013) Plasma viscosity levels in pulmonary thromboembolism. Clin Hemorheol Microcirc 55(3):313–320

    Article  CAS  PubMed  Google Scholar 

  22. Stępień K, Ząbczyk M, Kopytek M et al (2023) Reduced fibrin clot permeability on admission and elevated E-selectin at 3 months as novel risk factors of residual pulmonary vascular obstruction in patients with acute pulmonary embolism. J Thromb Thrombolysis. https://doi.org/10.1007/s11239-023-02901-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Babaoglu E, Ulasli SS (2023) Clinical importance of red cell distribution width and red cell index in pulmonary embolism. Eur Rev Med Pharmacol Sci 27(9):4108–4115

    CAS  PubMed  Google Scholar 

  24. Rezaeimoghaddam M, van de Vosse FN (2022) Continuum modeling of thrombus formation and growth under different shear rates. J Biomech 132:110915

    Article  PubMed  Google Scholar 

  25. Senturk B, Akdeniz B, Yilmaz MB et al (2020) Whole blood viscosity in systemic sclerosis: a potential biomarker of pulmonary hypertension? Clin Rheumato 39(1):49–56. https://doi.org/10.1007/s10067-019-04603-4

    Article  Google Scholar 

  26. Gok M, Kurtul A (2021) A novel marker for predicting severity of acute pulmonary embolism: systemic immune-inflammation index. Scand Cardiovasc J 55(2):91–96

    Article  CAS  PubMed  Google Scholar 

  27. Cetin EHO, Ozbay MB, Cetin MS et al (2020) A new risk model for the evaluation of the thromboembolic milieu in patients with atrial fibrillation: the PALSE score. Kardiol Pol 78(7–8):732–740

    Article  PubMed  Google Scholar 

  28. Saliba W, Rennert G (2014) CHA2DS2-VASc score is directly associated with the risk of pulmonary embolism in patients with atrial fibrillation. Am J Med 127(1):45–52

    Article  PubMed  Google Scholar 

  29. Abacioglu OO, Yildirim A, Karadeniz M et al (2022) A new score for determining thrombus burden in STEMI Patients: the MAPH score. Clin Appl Thromb Hemost 28:10760296211073768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cakmak Karaaslan O, Çöteli C, Ozilhan MO et al (2022) The predictive value of MAPH score for determining thrombus burden in patients with non-ST segment elevation myocardial infarction. Egypt Heart J 74(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kucuk U, Altınsoy M (2023) Relationship of MAPH score with left ventricular apical trombus and adverse events in patients with acute anterior ST-elevation myocardial infarction. ABC Heart Fail Cardiomyop 3(3):e20230060

    Article  Google Scholar 

  32. Tuzovic M, Adigopula S, Amsallem M et al (2016) Regional right ventricular dysfunction in acute pulmonary embolism: relationship with clot burden and biomarker profile. Int J Cardiovasc Imaging 32(3):389–398

    Article  PubMed  Google Scholar 

  33. Zhang H, Cheng Y, Chen Z et al (2022) Clot burden of acute pulmonary thromboembolism: comparison of two deep learning algorithms, Qanadli score, and Mastora score. Quant Imaging Med Surg 12(1):66–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hepburn-Brown M, Darvall J, Hammerschlag G (2019) Acute pulmonary embolism: a concise review of diagnosis and management. Intern Med J 49(1):15–27

    Article  PubMed  Google Scholar 

  35. Meyer HJ, Bailis N, Surov A (2021) Time efficiency and reliability of established computed tomographic obstruction scores in patients with acute pulmonary embolism. PLoS ONE 16(12):e0260802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ząbczyk M, Natorska J, Janion-Sadowska A et al (2021) Loose fibrin clot structure and increased susceptibility to lysis characterize patients with central acute pulmonary embolism: the impact of isolated embolism. Thromb Haemost 121(4):529–537

    Article  PubMed  Google Scholar 

  37. Kupis RW, Goldman-Mazur S, Polak M et al (2019) Faster fibrin clot degradation characterizes patients with central pulmonary embolism at a low risk of recurrent peripheral embolism. Sci Rep 9(1):72

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gleditsch J, Jervan Ø, Klok F et al (2023) Does the clot burden as assessed by the mean bilateral proximal extension of the clot score reflect mortality and adverse outcome after pulmonary embolism? Acta Radiol Open 12(6):20584601231187096

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: OA, MK, TG, Data collection: OA, MB, Data analysis and investigation: OA, MK, TG Methodology: OA, MK, TG Reviewing-editing: OA, MK, TG, writing: OA, MB, MK, TG.

Corresponding author

Correspondence to Onur Akhan.

Ethics declarations

Conflict of interest

All authors declare that the study has no funding and conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhan, O., Boz, M., Guzel, T. et al. Discrimination of the acute pulmonary embolism subtypes based on the novel MAPH score. J Thromb Thrombolysis 57, 683–690 (2024). https://doi.org/10.1007/s11239-024-02952-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-024-02952-9

Keywords

Navigation