Skip to main content
Log in

Large-amplitude vibrations of functionally graded shallow arches subjected to cooling shock

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear large-amplitude vibrations of shallow arch structures made of functionally graded materials (FGMs) under cooling shock have been investigated. It is considered that the FG shallow arch is made of low carbon steel \(\left(\mathrm{AISI }1020\right)\) and stainless steel \((\mathrm{SUS }304)\), whose material properties change in the thickness direction. Using the kinematic assumptions that are modeled based on the first-order shear deformation theory (FSDT) and the von Kármán’s geometrical nonlinearity; along with the aid of Hamilton’s principle, the shallow arch motion equations are obtained. The material properties vary in the direction of arch’s thickness due to the temperature changes and material distribution. Based on the Voigt rule of mixture and power law distribution, the dependence of material properties on temperature and material distribution is defined. Assuming uncoupled theory of thermoelasticity, first, the one-dimensional heat conduction equation is solved along the thickness of the arch in order to obtain the temperature distribution. Afterward, the equations of motion are solved. For the numerical solution of the heat conduction equation and the nonlinear equations of motion, the iterative hybrid method of generalized differential quadrature and the Newmark time integration scheme has been used in an iterative Newton–Raphson loop. After validating the present formulation, a parametric scrutiny is conducted regarding the influence of various parameters, namely, thermal load rapidity time, FG-index, dimensional parameters on the mid-plane non-dimensional lateral deflection of the arch as well as the changes in stress and material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Babaee, A., Jelovica, J.: Large amplitude vibration of annular and circular functionally graded composite plates under cooling thermal shocks. Thin-Walled Struct. 182, 110142 (2023). https://doi.org/10.1016/j.tws.2022.110142

    Article  Google Scholar 

  2. Boley, B.A.: Thermally induced vibrations of beams. J. Aeronaut. Sci 23(2), 179–181 (1956)

    Google Scholar 

  3. Krommer, M.: On the influence of pyroelectricity upon thermally induced vibrations of piezothermoelastic plates. Acta Mech. 171(1–2), 59–73 (2004). https://doi.org/10.1007/s00707-004-0132-z

    Article  Google Scholar 

  4. Sheng, G.G., Wang, X.: Thermomechanical vibration analysis of a functionally graded shell with flowing fluid. Eur. J. Mech. A/Solids 27(6), 1075–1087 (2008). https://doi.org/10.1016/j.euromechsol.2008.02.003

    Article  Google Scholar 

  5. Kawamura, R., Fujita, H., Ootao, Y., Tanigawa, Y., Ikeda, K., Kinoshita, H.: Mathematical analysis of flexural vibrations of inhomogeneous rectangular plates and beams subjected to cyclic loadings of temperature change and external force. Acta Mech. 214(1–2), 133–144 (2010). https://doi.org/10.1007/s00707-010-0311-z

    Article  Google Scholar 

  6. Ansari, R., Gholami, R., Darabi, M.A.: Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal timoshenko beam theory. J. Therm. Stress. 34(12), 1271–1281 (2011). https://doi.org/10.1080/01495739.2011.616802

    Article  Google Scholar 

  7. Tylikowski, A.: Instability of thermally induced vibrations of carbon nanotubes via nonlocal elasticity. J. Therm. Stress. 35(1–3), 281–289 (2012). https://doi.org/10.1080/01495739.2012.637831

    Article  Google Scholar 

  8. Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83(10), 1439–1449 (2013). https://doi.org/10.1007/s00419-013-0756-3

    Article  Google Scholar 

  9. Civalek, Ö., Uzun, B., Yaylı, M.Ö., Akgöz, B.: Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus. 135(4), 381 (2020). https://doi.org/10.1140/epjp/s13360-020-00385-w

    Article  Google Scholar 

  10. Asadi, H., Bodaghi, M., Shakeri, M., Aghdam, M.M.: An analytical approach for nonlinear vibration and thermal stability of shape memory alloy hybrid laminated composite beams. Eur. J. Mech. A/Solids 42, 454–468 (2013). https://doi.org/10.1016/j.euromechsol.2013.07.011

    Article  Google Scholar 

  11. Wu, G.Y.: Non-linear vibration of bimaterial magneto-elastic cantilever beam with thermal loading. Int. J. Non. Linear. Mech. 55, 10–18 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.04.009

    Article  Google Scholar 

  12. Zenkour, A.M., Abouelregal, A.E.: Vibration of FG nanobeams induced by sinusoidal pulse-heating via a nonlocal thermoelastic model. Acta Mech. 225(12), 3409–3421 (2014). https://doi.org/10.1007/s00707-014-1146-9

    Article  MathSciNet  Google Scholar 

  13. Zarezadeh, E., Eshaghi, J., Barati, A.: Static pull-in analysis of the cantilever and clamped FG-microswitches in presence of the longitudinal magnetic field based on the modified couple stress theory. Eur. Phys. J. Plus 138(6), 524 (2023). https://doi.org/10.1140/EPJP/S13360-023-04143-6

    Article  Google Scholar 

  14. Lal, R., Ahlawat, N.: Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method. Eur. J. Mech. A/Solids 52, 85–94 (2015). https://doi.org/10.1016/j.euromechsol.2015.02.004

    Article  MathSciNet  Google Scholar 

  15. Alipour, S.M., Kiani, Y., Eslami, M.R.: Rapid heating of FGM rectangular plates. Acta Mech. 227(2), 421–436 (2016). https://doi.org/10.1007/s00707-015-1461-9

    Article  MathSciNet  Google Scholar 

  16. Ashok, S., Jeyaraj, P.: Static deflection and thermal stress analysis of non-uniformly heated tapered composite laminate plates with ply drop-off. Structures 15(August), 307–319 (2018). https://doi.org/10.1016/j.istruc.2018.07.010

    Article  Google Scholar 

  17. Allahyari, E., Asgari, M.: Thermo-mechanical vibration of double-layer graphene nanosheets in elastic medium considering surface effects; developing a nonlocal third order shear deformation theory. Eur. J. Mech. A/Solids 75, 307–321 (2019). https://doi.org/10.1016/j.euromechsol.2019.01.022

    Article  MathSciNet  Google Scholar 

  18. Chu, L., Dui, G., Zheng, Y.: Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory. Eur. J. Mech. A/Solids 1(82), 103999 (2020)

    Article  MathSciNet  Google Scholar 

  19. Phung-Van, P., Thai, C.H., Ferreira, A.J.M., Rabczuk, T.: Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads. Thin-Walled Struct. (2019). https://doi.org/10.1016/j.tws.2019.106497

    Article  Google Scholar 

  20. Babaei, H.: Large deflection analysis of FG-CNT reinforced composite pipes under thermal-mechanical coupling loading. Structures 34, 886–900 (2021)

    Article  Google Scholar 

  21. Liu, T., Li, Z.-M.: Nonlinear vibration analysis of functionally graded material tubes with conveying fluid resting on elastic foundation by a new tubular beam model. Int. J. Non. Linear. Mech. 137, 103824 (2021)

    Article  Google Scholar 

  22. Ansari, R., Oskouie, M.F., Zargar, M.: Hygrothermally induced vibration analysis of bidirectional functionally graded porous beams. Transp. Porous Media 142(1–2), 41–62 (2021). https://doi.org/10.1007/s11242-021-01700-4

    Article  Google Scholar 

  23. Faraji Oskouie, M., Zargar, M., Ansari, R.: Dynamic snap-through instability of hygro-thermally excited functionally graded porous arches. Int. J. Struct. Stab. Dyn. 23(03), 2350030 (2023). https://doi.org/10.1142/s021945542350030x

    Article  MathSciNet  Google Scholar 

  24. Zargar Ershadi, M., Faraji Oskouie, M., Ansari, R.: Nonlinear vibration analysis of functionally graded porous circular plates under hygro-thermal loading. Mech. Based Des. Struct. Mach. 14, 1–8 (2022)

    Google Scholar 

  25. Alimoradzadeh, M., Tornabene, F., Esfarjani, S.M., Dimitri, R.: Finite strain-based theory for the superharmonic and subharmonic resonance of beams resting on a nonlinear viscoelastic foundation in thermal conditions, and subjected to a moving mass loading. Int. J. Non. Linear. Mech. 148, 104271 (2023)

    Article  Google Scholar 

  26. Keibolahi, A., Kiani, Y., Eslami, M.R.: Nonlinear dynamic snap-through and vibrations of temperature-dependent FGM deep spherical shells under sudden thermal shock. Thin-Walled Struct. 185, 110561 (2023)

    Article  Google Scholar 

  27. Khoram-Nejad, E.S., Moradi, S., Shishehsaz, M.: Effect of crack characteristics on the vibration behavior of post-buckled functionally graded plates. Structures 50, 181–199 (2023)

    Article  Google Scholar 

  28. Ansari, R., Ershadi, M.Z., Mirsabetnazar, A.: Nonlinear large amplitude vibrations of higher-order functionally graded beams under cooling shock. Eng. Anal. Bound. Elem. 1(152), 225–234 (2023). https://doi.org/10.1016/j.enganabound.2023.03.043

    Article  MathSciNet  Google Scholar 

  29. Ansari, R., Nesarhosseini, S., Faraji Oskouie, M., Rouhi, H.: Dynamic response of rapidly heated rectangular plates made of porous functionally graded material. Int. J. Struct. Stab. Dyn. 22(08), 2250090 (2022)

    Article  MathSciNet  Google Scholar 

  30. Mirzavand, B., Javadi, M.G., Amiri Atashgah, M.A.: On thermally induced vibration control of hybrid magnetostrictive beams and plates. Int. J. Struct. Stab. Dyn. 23(01), 2350008 (2023). https://doi.org/10.1142/S0219455423500086

    Article  MathSciNet  Google Scholar 

  31. Fan, C., Bi, Y., Wang, J., Liu, G., Xiang, Z.: Experimental investigation of heat flux characteristics on the thermally induced vibration of a slender thin-walled beam. Int. J. Appl. Mech. 12(05), 2050053 (2020)

    Article  Google Scholar 

  32. Moghaddasi, M., Kiani, Y.: Free and forced vibrations of graphene platelets reinforced composite laminated arches subjected to moving load. Meccanica 57(5), 1105–1124 (2022). https://doi.org/10.1007/s11012-022-01476-x

    Article  MathSciNet  Google Scholar 

  33. Javani, M., Kiani, Y., Sadighi, M., Eslami, M.R.: Nonlinear vibration behavior of rapidly heated temperature-dependent FGM shallow spherical shells. AIAA J. 57(9), 4071–4084 (2019). https://doi.org/10.2514/1.J058240

    Article  Google Scholar 

  34. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-Pournaki, I., Shabani, R.: Thermally induced vibration of a functionally graded micro-beam subjected to a moving laser beam. Int. J. Appl. Mech. 6(6), 1–16 (2014). https://doi.org/10.1142/S1758825114500665

    Article  Google Scholar 

  35. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-Poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37(10–11), 6964–6978 (2013). https://doi.org/10.1016/j.apm.2013.02.034

    Article  MathSciNet  Google Scholar 

  36. Jafarsadeghi-Pournaki, I., Rezazadeh, G., Zamanzadeh, M., Shabani, R.: Parametric thermally induced vibration of an electrostatically deflected FGM micro-beam. Int. J. Appl. Mech. 8(8), 1–22 (2016). https://doi.org/10.1142/S1758825116500927

    Article  Google Scholar 

  37. Babaee, A., Jelovica, J.: Nonlinear transient thermoelastic response of FGM plate under sudden cryogenic cooling. Ocean Eng. 15(226), 108875 (2021)

    Article  Google Scholar 

  38. Besisa, D.H., Ewais, E.M.: Advances in functionally graded ceramics—processing, sintering properties and applications. Adv. Funct. Graded Mater. Struct. 31, 1–32 (2016)

    Google Scholar 

  39. Ghiasian, S.E., Kiani, Y., Eslami, M.R.: Non-linear rapid heating of FGM beams. Int. J. Non. Linear. Mech. 67, 74–84 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.08.006

    Article  Google Scholar 

  40. Javani, M., Kiani, Y., Eslami, M.R.: Geometrically nonlinear rapid surface heating of temperature-dependent FGM arches. Aerosp. Sci. Technol. 90, 264–274 (2019). https://doi.org/10.1016/j.ast.2019.04.049

    Article  Google Scholar 

  41. Shu, C.: Differential Quadrature and Its Application in Engineering. Springer Science & Business Media, Cham (2000)

    Book  Google Scholar 

  42. Newmark, N.M.: A method of computation for structural dynamics. J .Eng. Mech. Div. 85(3), 67–94 (1959)

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

R. Ansari: Supervision, Conceptualization, Methodology, Writing- Reviewing and Editing A. Mirsabetnazar: Conceptualization, Methodology, Writing- Original draft preparation M. Zargar Ershadi: Methodology, Validation

Corresponding author

Correspondence to R. Ansari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

$${\varvec{\mathfrak{M}}}_{11} = - I_{0} {\mathbf{I}}_{{N_{\theta } \times N_{\theta } }}$$
$${\varvec{\mathfrak{M}}}_{12} = 0_{{N_{\theta } \times N_{\theta } }}$$
$${\varvec{\mathfrak{M}}}_{13} = - I_{1} {\mathbf{I}}_{{N_{{N_{\theta } }} \times N_{{N_{\theta } }} }}$$
$${\varvec{\mathfrak{M}}}_{21} = 0_{{N_{\theta } \times N_{\theta } }}$$
$${\varvec{\mathfrak{M}}}_{22} = - I_{0} {\mathbf{I}}_{{N_{\theta } \times N_{\theta } }}$$
$${\varvec{\mathfrak{M}}}_{23} = 0_{{N_{\theta } \times N_{\theta } }}$$
$${\varvec{\mathfrak{M}}}_{31} = - I_{1} {\mathbf{I}}_{{N_{\theta } \times N_{\theta } }}$$
$${\varvec{\mathfrak{M}}}_{32} = 0_{{N_{\theta } \times N_{\theta } }}$$
$${\varvec{\mathfrak{M}}}_{33} = - I_{2} {\mathbf{I}}_{{N_{\theta } \times N_{\theta } }}$$
$$\hbar_{11} = \frac{{A_{11} }}{{R^{2} }}{\mathbf{D}}_{\theta }^{2}$$
$$\hbar_{12} = \frac{{A_{11} }}{{R^{3} }}{\mathbf{D}}_{\theta }^{2} \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{1} - \frac{{A_{11} }}{{R^{2} }}{\mathbf{D}}_{\theta }^{1}$$
$$\hbar_{13} = \frac{{B_{11} }}{{R^{2} }}{\mathbf{D}}_{\theta }^{2}$$
$$\hbar_{21} = \frac{{A_{11} }}{{R^{2} }}{\mathbf{D}}_{\theta }^{1} + \frac{{A_{11} }}{{R^{3} }}\left[ {{\mathbf{D}}_{{{\varvec{\uptheta}}}}^{1} \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{2} + {\mathbf{D}}_{\theta }^{2} \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{1} } \right]$$
$$\hbar_{22} = 1.5 \times \frac{{A_{11} }}{{R^{4} }}{\mathbf{D}}_{\theta }^{2} \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{1} \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{1}$$
$$- \frac{{A_{11} }}{{R^{3} }}\left[ {0.5 \times {\mathbf{D}}_{\theta }^{1} \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{1} + \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{2} } \right] + \frac{{A_{55} }}{{R^{2} }}{\mathbf{D}}_{\theta }^{2} - \frac{{A_{11} }}{{R^{2} }}{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }}$$
$$\hbar_{23} = \frac{{B_{11} }}{{R^{2} }}{\mathbf{D}}_{\theta }^{1} + \frac{{B_{11} }}{{R^{3} }}\left[ {{\mathbf{D}}_{{{\varvec{\uptheta}}}}^{1} \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{2} + {\mathbf{D}}_{\theta }^{2} \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{1} } \right] + \frac{{A_{55} }}{R}{\mathbf{D}}_{\theta }^{1}$$
$$\hbar_{31} = \frac{{B_{11} }}{{R^{2} }}{\mathbf{D}}_{\theta }^{2}$$
$$\hbar_{32} = \frac{{B_{11} }}{{R^{3} }}{\mathbf{D}}_{\theta }^{2} \left( {{\mathbf{I}}_{{N_{\theta } \times N_{\theta } }} {\mathbf{w}}_{{N_{\theta } \times 1}} } \right){\mathbf{D}}_{\theta }^{1} - \frac{{B_{11} }}{{R^{2} }}{\mathbf{D}}_{\theta }^{1} - \frac{{A_{55} }}{R}{\mathbf{D}}_{\theta }^{1}$$
$$\hbar_{{33}} = \frac{{\varvec{D}_{{11}} }}{{R^{2} }}{\varvec{D}}_{\theta }^{2} - A_{{55}} {\varvec{I}}_{{N_{\theta } \times N_{\theta } }}$$

Herein, \({\mathbf{I}}\) is the \(N_{\theta } \times N_{\theta }\) identity matrix, \({\mathbf{D}}_{\theta }^{{\mathbf{m}}}\) represents the derivative matrix of order \(m\), and \({\mathbf{w}}\) is the vector of nodal lateral deflections.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Mirsabetnazar, A. & Ershadi, M.Z. Large-amplitude vibrations of functionally graded shallow arches subjected to cooling shock. Arch Appl Mech 94, 801–818 (2024). https://doi.org/10.1007/s00419-024-02541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-024-02541-5

Keywords

Navigation