Skip to main content

Advertisement

Log in

An explainable machine learning-based probabilistic framework for the design of scaffolds in bone tissue engineering

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Recently, 3D-printed biodegradable scaffolds have shown great potential for bone repair in critical-size fractures. The differentiation of the cells on a scaffold is impacted among other factors by the surface deformation of the scaffold due to mechanical loading and the wall shear stresses imposed by the interstitial fluid flow. These factors are in turn significantly affected by the material properties, the geometry of the scaffold, as well as the loading and flow conditions. In this work, a numerical framework is proposed to study the influence of these factors on the expected osteochondral cell differentiation. The considered scaffold is rectangular with a 0/90 lay-down pattern and a four-layered strut made of polylactic acid with a 5% steel particle content. The distribution of the different types of cells on the scaffold surface is estimated through a scalar stimulus, calculated by using a mechanobioregulatory model. To reduce the simulation time for the computation of the stimulus, a probabilistic machine learning (ML)-based reduced-order model (ROM) is proposed. Then, a sensitivity analysis is performed using the Shapley additive explanations to examine the contribution of the various parameters to the framework stimulus predictions. In a final step, a multiobjective optimization procedure is implemented using genetic algorithms and the ROM, aiming to identify the material parameters and loading conditions that maximize the percentage of surface area populated by bone cells while minimizing the area corresponding to the other types of cells and the resorption condition. The results of the performed analysis highlight the potential of using ROMs for the scaffold design, by dramatically reducing the simulation time while enabling the efficient implementation of sensitivity analysis and optimization procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al (2016) \(\{\)TensorFlow\(\}\): A system for \(\{\)Large-Scale\(\}\) machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283

  • Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, Fieguth P, Cao X, Khosravi A, Acharya UR et al (2021) A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf Fus 76:243–297

    Google Scholar 

  • Ahmed A, Uddin MN, Akbar M, Salih R, Khan MA, Bisheh H, Rabczuk T (2023) Prediction of shear behavior of glass FRP bars-reinforced ultra-highperformance concrete i-shaped beams using machine learning. Int J Mech Mater Des. 1–22

  • Al-Barqawi MO, Church B, Thevamaran M, Thoma DJ, Rahman A (2022) Experimental validation and evaluation of the bending properties of additively manufactured metallic cellular scaffold structures for bone tissue engineering. Materials 15(10):3447

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali D, Sen S (2018) Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: computational fluid dynamic analysis using newtonian and non-newtonian blood flow models. Comput Biol Med 99:201–208

    CAS  PubMed  Google Scholar 

  • Al-Mamun NS, Deen KM, Haider W, Asselin E, Shabib I (2020) Corrosion behavior and biocompatibility of additively manufactured 316l stainless steel in a physiological environment: The effect of citrate ions. Addit Manuf 34:101237

    CAS  Google Scholar 

  • Asbai-Ghoudan R, Nasello G, Pérez MÁ, Verbruggen SW, Galarreta SR, Rodriguez-Florez N (2023) In silico assessment of the bone regeneration potential of complex porous scaffolds. Comput Biol Med 165:107381

    CAS  PubMed  Google Scholar 

  • Baliga BR, Patankar SV (1983) A control volume finite-element method for two-dimensional fluid flow and heat transfer. Numer Heat Trans 6(3):245–261. https://doi.org/10.1080/01495728308963086

    Article  ADS  Google Scholar 

  • Bao C, Xu L, Goodman ED, Cao L (2017) A novel non-dominated sorting algorithm for evolutionary multi-objective optimization. J Comput Sci 23:31–43

    MathSciNet  Google Scholar 

  • Baptista R, Guedes M (2021) Morphological and mechanical characterization of 3d printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement. Mater Sci Eng C 118:111528

    CAS  Google Scholar 

  • Baptista R, Guedes M (2021) Porosity and pore design influence on fatigue behavior of 3d printed scaffolds for trabecular bone replacement. J Mech Behavior Biomed Mater 117:104378

    CAS  Google Scholar 

  • Bebendorf M, Grzhibovskis R (2006) Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math Methods Appl Sci 29(14):1721–1747

    MathSciNet  Google Scholar 

  • Benedetti I, Aliabadi M, Davi G (2008) A fast 3d dual boundary element method based on hierarchical matrices. Int J Solids Struct 45(7–8):2355–2376

    Google Scholar 

  • Blank J, Deb K (2020) Pymoo: multi-objective optimization in python. IEEE Access 8:89497–89509

    Google Scholar 

  • Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a review for statisticians. J Am Stat Assoc 112(518):859–877

    MathSciNet  CAS  Google Scholar 

  • Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural network. In: International conference on machine learning, pp 1613–1622

  • Boccaccio A, Uva AE, Fiorentino M, Lamberti L, Monno G (2016) A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int J Biol Sci 12(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borgiani E, Duda GN, Willie BM, Checa S (2021) Bone morphogenetic protein 2-induced cellular chemotaxis drives tissue patterning during critical-sized bone defect healing: An in silico study. Biomech Model Mechanobiol 20(4):1627–1644

    PubMed  PubMed Central  Google Scholar 

  • Brown AE, Discher DE (2009) Conformational changes and signaling in cell and matrix physics. Curr Biol 19(17):781–789

    Google Scholar 

  • Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013) API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD workshop: languages for data mining and machine learning, pp 108–122

  • Burova I, Wall I, Shipley RJ (2019) Mathematical and computational models for bone tissue engineering in bioreactor systems. J Tissue Eng 10:2041731419827922

    PubMed  PubMed Central  Google Scholar 

  • Buxboim A, Ivanovska IL, Discher DE (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’outside and in? J Cell Sci 123(3):297–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28(36):5544–5554

    CAS  PubMed  Google Scholar 

  • Chauhan A, Bhatt AD (2023) A review on design of scaffold for osteoinduction: toward the unification of independent design variables. Biomech Model Mechanobiol 22(1):1–21

    PubMed  Google Scholar 

  • Checa S, Prendergast PJ (2010) Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J Biomech 43(5):961–968

    PubMed  Google Scholar 

  • Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J (2020) Porous scaffold design for additive manufacturing in orthopedics: a review. Front Bioeng Biotechnol 8:609

    PubMed  PubMed Central  Google Scholar 

  • Coello CC (2006) Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput Intell Mag 1(1):28–36

    Google Scholar 

  • Cubo-Mateo N, Rodríguez-Lorenzo LM (2020) Design of thermoplastic 3d-printed scaffolds for bone tissue engineering: influence of parameters of “hidden’’ importance in the physical properties of scaffolds. Polymers 12(7):1546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-ii. IEEE Trans Evol Comput 6(2):182–197

    Google Scholar 

  • Drakoulas GI, Gortsas TV, Polyzos D (2023) A probabilistic reduced order modeling framework for the design of composite scaffolds in bone tissue engineering. In: Proceedings of the 10th international conference on smart structures and materials, pp. 23–34. https://doi.org/10.7712/150123.9761.455453

  • Drakoulas G, Gortsas T, Bourantas G, Burganos V, Polyzos D (2023) FastSVD-ML-ROM: a reduced-order modeling framework based on machine learning for real-time applications. Comput Methods Appl Mech Eng 414:116155

    ADS  MathSciNet  Google Scholar 

  • Drakoulas G, Gortsas T, Polyzos D Physics-based reduced order modeling for uncertainty quantification of guided wave propagation using bayesian optimization. arXiv preprint arXiv:2307.09661 (2023)

  • Du M, Liu N, Hu X (2019) Techniques for interpretable machine learning. Commun ACM 63(1):68–77

    ADS  Google Scholar 

  • Dussault A, Pitaru AA, Weber MH, Haglund L, Rosenzweig DH, Villemure I (2022) Optimizing design parameters of PLA 3d-printed scaffolds for bone defect repair. Surgeries 3(3):162–174

    Google Scholar 

  • Egger D, Fischer M, Clementi A, Ribitsch V, Hansmann J, Kasper C (2017) Development and characterization of a parallelizable perfusion bioreactor for 3D cell culture. Bioengineering 4:51

    PubMed  PubMed Central  Google Scholar 

  • Feinberg J, Langtangen HP (2015) Chaospy: an open source tool for designing methods of uncertainty quantification. J Comput Sci 11:46–57

    MathSciNet  Google Scholar 

  • Fielder M, Nair AK (2023) Bone tissue growth in ultrasonically stimulated bioinspired scaffolds. Comput Methods Biomech Biomed Eng 26(10):1134–1139

    Google Scholar 

  • Fu L, Li P, Li H, Gao C, Yang Z, Zhao T, Chen W, Liao Z, Peng Y, Cao F, et al (2021) The application of bioreactors for cartilage tissue engineering: advances, limitations, and future perspectives. Stem Cells Int

  • Ganaie MA, Hu M, Malik A, Tanveer M, Suganthan P (2022) Ensemble deep learning: a review. Eng Appl Artif Intell 115:105151

    Google Scholar 

  • García-Aznar JM, Nasello G, Hervas-Raluy S, Pérez MÁ, Gómez-Benito MJ (2021) Multiscale modeling of bone tissue mechanobiology. Bone 151:116032

    PubMed  Google Scholar 

  • Garois S, Daoud M, Chinesta F (2023) Explaining hardness modeling with Xai of c45 steel spur-gear induction hardening. Int J Mater Form 16(5):57

    Google Scholar 

  • Gortsas T, Tsinopoulos S, Polyzos D (2015) An advanced ACA/BEM for solving 2d large-scale problems with multi-connected domains. Comput Model Eng Sci 107(4):321–343

    Google Scholar 

  • Gortsas TV, Tsinopoulos S, Polyzos E, Pyl L, Fotiadis D, Polyzos D (2022) BEM evaluation of surface octahedral strains and internal strain gradients in 3d-printed scaffolds used for bone tissue regeneration. J Mech Behav Biomed Mater 125:104919

    CAS  PubMed  Google Scholar 

  • Gortsas TV, Tsinopoulos SV, Polyzos D (2022) An accelerated boundary element method via cross approximation of integral kernels for large-scale cathodic protection problems. Comput Aided Civil Infrastruct Eng 37(7):848–863

    Google Scholar 

  • Grivas KN, Vavva MG, Polyzos D, Carlier A, Geris L, Van Oosterwyck H, Fotiadis DI (2019) Effect of ultrasound on bone fracture healing: a computational mechanobioregulatory model. J Acoust Soc Am 145(2):1048–1059

    ADS  CAS  PubMed  Google Scholar 

  • Guiggiani M (1994) Hypersingular formulation for boundary stress evaluation. Eng Anal Boundary Elem 13(2):169–179

    Google Scholar 

  • Guiggiani M, Gigante A (1990) A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method

  • Guiggiani M, Krishnasamy G, Rudolphi TJ, Rizzo F (1992) A general algorithm for the numerical solution of hypersingular boundary integral equations

  • Guo M, Hesthaven JS (2018) Reduced order modeling for nonlinear structural analysis using gaussian process regression. Comput Methods Appl Mech Eng 341:807–826

    ADS  MathSciNet  Google Scholar 

  • Haider AM, Schanz M (2019) Adaptive cross approximation for BEM in elasticity. J Theor Comput Acoust 27(01):1850060

    MathSciNet  Google Scholar 

  • Hasan YA, Romagnoli JA (2004) Chapter b4-process design and operation: incorporating environmental, profitability, heat integration and controllability considerations. Comput Aided Chem Eng 17:264–305

    Google Scholar 

  • Häse F, Galván IF, Aspuru-Guzik A, Lindh R, Vacher M (2019) How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry. Chem Sci 10(8):2298–2307

    PubMed  Google Scholar 

  • Hendrikson W, Van Blitterswijk C, Verdonschot N, Moroni L, Rouwkema J (2014) Modeling mechanical signals on the surface of \(\mu \)ct and cad based rapid prototype scaffold models to predict (early stage) tissue development. Biotechnol Bioeng 111(9):1864–1875

    CAS  PubMed  Google Scholar 

  • Hendrikson WJ, Deegan AJ, Yang Y, Van Blitterswijk CA, Verdonschot N, Moroni L, Rouwkema J (2017) Influence of additive manufactured scaffold architecture on the distribution of surface strains and fluid flow shear stresses and expected osteochondral cell differentiation. Front Bioeng Biotechnol 5:6

    PubMed  PubMed Central  Google Scholar 

  • Hensman J, Fusi N, Lawrence ND (2013) Gaussian processes for big data. arXiv preprint arXiv:1309.6835

  • Huber O, Lang A, Kuhn G (1993) Evaluation of the stress tensor in 3d elastostatics by direct solving of hypersingular integrals. Comput Mech 12(1–2):39–50

    MathSciNet  Google Scholar 

  • Jang J-W, Min K-E, Kim C, Wern C, Yi S (2023) PCL and DMSO2 composites for bio-scaffold materials. Materials 16(6):2481

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Ning F (2020) Fused filament fabrication of biodegradable PLA/316l composite scaffolds: effects of metal particle content. Procedia Manuf 48:755–762

    Google Scholar 

  • Jiang D, Ning F, Wang Y (2021) Additive manufacturing of biodegradable iron-based particle reinforced polylactic acid composite scaffolds for tissue engineering. J Mater Process Technol 289:116952

    CAS  Google Scholar 

  • Jospin LV, Laga H, Boussaid F, Buntine W, Bennamoun M (2022) Hands-on bayesian neural networks-a tutorial for deep learning users. IEEE Comput Intell Mag 17(2):29–48

    Google Scholar 

  • Kadeethum T, Ballarin F, Choi Y, O’Malley D, Yoon H, Bouklas N (2022) Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques. Adv Water Resour 160:104098

    CAS  Google Scholar 

  • Karvonen T, Oates CJ (2023) Maximum likelihood estimation in gaussian process regression is ill-posed. J Mach Learn Res 24(120):1–47

    MathSciNet  Google Scholar 

  • Khogalia EH, Choo HL, Yap WH (2020) Performance of triply periodic minimal surface lattice structures under compressive loading for tissue engineering applications. In: AIP conference proceedings, vol 2233. AIP Publishing

  • Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  • Kingma DP, Welling M et al (2019) An introduction to variational autoencoders. Foundations and Trends in Machine Learning 12(4), 307–392

  • Kozaniti FK, Manara AE, Kostopoulos V, Mallis P, Michalopoulos E, Polyzos D, Deligianni DD, Portan DV (2023) Computational and experimental investigation of the combined effect of various 3d scaffolds and bioreactor stimulation on human cells’ feedback. Appl Biosci 2(2):249–277

    Google Scholar 

  • Lacroix D (2001) Simulation of tissue differentation during fracture healing. PhD thesis, Trinity College Dublin

  • Li Z (2022) Extracting spatial effects from machine learning model using local interpretation method: an example of shap and xgboost. Comput Environ Urban Syst 96:101845

    Google Scholar 

  • Liang X, Gao J, Xu W, Wang X, Shen Y, Tang J, Cui S, Yang X, Liu Q, Yu L et al (2019) Structural mechanics of 3d-printed poly (lactic acid) scaffolds with tetragonal, hexagonal and wheel-like designs. Biofabrication 11(3):035009

    ADS  CAS  PubMed  Google Scholar 

  • Liu L, Wang S, Liu J, Deng F, Li Z, Hao Y (2020) Architectural design of ti6al4v scaffold controls the osteogenic volume and application area of the scaffold. J Market Res 9(6):15849–15861

    CAS  Google Scholar 

  • Lovecchio J, Gargiulo P, Vargas Luna JL, Giordano E, Sigurjónsson ÓE (2019) A standalone bioreactor system to deliver compressive load under perfusion flow to HBMSC-seeded 3d chitosan-graphene templates. Sci Rep 9(1):16854

    ADS  PubMed  PubMed Central  Google Scholar 

  • Lu, Q., Polyzos, K.D., Li, B., Giannakis GB (2023) Surrogate modeling for Bayesian optimization beyond a single gaussian process. IEEE Trans Pattern Anal Mach Intell

  • Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions. Adv Neural Inf Process Syst

  • Lu Q, Polyzos KD (2023) Gaussian process dynamical modeling for adaptive inference over graphs. In: ICASSP 2023-2023 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1–5. IEEE

  • Madej W, Van Caam A, Davidson EB, Van Der Kraan P, Buma P (2014) Physiological and excessive mechanical compression of articular cartilage activates smad2/3p signaling. Osteoarthritis Cartilage 22(7):1018–1025

    CAS  PubMed  Google Scholar 

  • Magris M, Iosifidis A (2023) Bayesian learning for neural networks: an algorithmic survey. Artif Intell Rev, 1–51

  • Maulik R, Fukami K, Ramachandra N, Fukagata K, Taira K Probabilistic neural networks for fluid flow model-order reduction and data recovery. arXiv preprint arXiv:2005.04271 (2020)

  • Mauney J, Blumberg J, Horan R, Oleary J, Vunjak-Novakovic G, Volloch V, Kaplan D (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-d partially demineralized bone scaffolds in vitro. Calcified Tissue Int 74:458–468

    CAS  Google Scholar 

  • Mirjalili S, Mirjalili S Genetic algorithm. Evolut Algorithms Neural Networks Theory Appl 43–55 (2019)

  • Mohammed A, Kora R (2023) A comprehensive review on ensemble deep learning: opportunities arasmussennd challenges. J King Saud Univ Comput Inf Sci

  • Mohol SS, Kumar M, Sharma V (2023) PLA-based nature-inspired architecture for bone scaffolds: a finite element analysis. Comput Biol Med. 107163

  • Mosca E, Szigeti F, Tragianni S, Gallagher D, Groh G (2022) Shap-based explanation methods: a review for NLP interpretability. In: Proceedings of the 29th international conference on computational linguistics, pp 4593–4603

  • Muixí A, Zlotnik S, Calvet P, Espanol M, Lodoso-Torrecilla I, Ginebra M-P, Díez P, García-González A (2022) A multiparametric advection-diffusion reduced-order model for molecular transport in scaffolds for osteoinduction. Biomech Model Mechanobiol 21(4):1099–1115

    PubMed  PubMed Central  Google Scholar 

  • Mustafa NS, Akhmal NH, Izman S, Ab Talib MH, Shaiful AIM, Omar MNB, Yahaya NZ, Illias S (2021) Application of computational method in designing a unit cell of bone tissue engineering scaffold: a review. Polymers 13(10):1584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nastos C, Komninos P, Zarouchas D (2023) Non-destructive strength prediction of composite laminates utilizing deep learning and the stochastic finite element methods. Compos Struct 311:116815

    Google Scholar 

  • Niu X, Xu Z, Di M, Huang D, Li X (2023) Bioreactor strategies for tissue-engineered osteochondral constructs: advantages, present situations and future trends. Compos B Eng

  • Nyberg E, O’Sullivan A, Grayson W (2019) Scafslicr: a matlab-based slicing algorithm to enable 3d-printing of tissue engineering scaffolds with heterogeneous porous microarchitecture. PLoS ONE 14(11):0225007

    Google Scholar 

  • Olivares AL, Marsal È, Planell JA, Lacroix D (2009) Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30(30):6142–6149

    CAS  PubMed  Google Scholar 

  • Omar AM, Hassan MH, Daskalakis E, Ates G, Bright CJ, Xu Z, Powell EJ, Mirihanage W, Bartolo PJ (2022) Geometry-based computational fluid dynamic model for predicting the biological behavior of bone tissue engineering scaffolds. J Funct Biomater 13(3):104

    PubMed  PubMed Central  Google Scholar 

  • Paz C, Suárez E, Gil C, Parga O (2022) Numerical modelling of osteocyte growth on different bone tissue scaffolds. Comput Methods Biomech Biomed Engin 25(6):641–655

    PubMed  Google Scholar 

  • Perier-Metz C, Duda GN, Checa S (2021) Initial mechanical conditions within an optimized bone scaffold do not ensure bone regeneration-an in silico analysis. Biomech Model Mechanobiol 20(5):1723–1731

    PubMed  PubMed Central  Google Scholar 

  • Perier-Metz C, Cipitria A, Hutmacher DW, Duda GN, Checa S (2022a) An in silico model predicts the impact of scaffold design in large bone defect regeneration. Acta Biomater 145:329–341

    CAS  PubMed  Google Scholar 

  • Perier-Metz C, Duda GN, Checa S (2022b) A mechanobiological computer optimization framework to design scaffolds to enhance bone regeneration. Front Bioeng Biotechnol 10:980727

    PubMed  PubMed Central  Google Scholar 

  • Pham TQD, Hoang TV, Van Tran X, Pham QT, Fetni S, Duchêne L, Tran HS, Habraken A-M (2023) Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning. J Intell Manuf 34(4):1701–1719

    Google Scholar 

  • Polyzos KD, Lu Q, Giannakis GB (2023) Bayesian optimization with ensemble learning models and adaptive expected improvement. In: ICASSP 2023-2023 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1–5. IEEE

  • Polyzos KD, Lu Q, Giannakis GB (2023) Bayesian optimization with ensemble learning models and adaptive expected improvement. In: ICASSP 2023–2023 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 1–5. https://doi.org/10.1109/ICASSP49357.2023.10095008

  • Polyzos D, Tsinopoulos S, Beskos D (1998) Static and dynamic boundary element analysis in incompressible linear elasticity. Eur J Mech A/Solids 17(3):515–536

    Google Scholar 

  • Polyzos KD, Lu Q, Giannakis GB (2021) Ensemble gaussian processes for online learning over graphs with adaptivity and scalability. IEEE Trans Signal Process 70:17–30

    ADS  Google Scholar 

  • Portan DV, Ntoulias C, Mantzouranis G, Fortis AP, Deligianni DD, Polyzos D, Kostopoulos V (2021) Gradient 3D printed PLA scaffolds on biomedical titanium: mechanical evaluation and biocompatibility. Polymers 13(5):682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Post JN, Loerakker S, Merks RM, Carlier A (2022) Implementing computational modeling in tissue engineering: where disciplines meet. Tissue Eng A 28(11–12):542–554

    Google Scholar 

  • Prendergast P (1997) Finite element models in tissue mechanics and orthopaedic implant design. Clin Biomech 12(6):343–366

    CAS  Google Scholar 

  • Rodopoulos DC, Gortsas TV, Tsinopoulos SV, Polyzos D (2021) Numerical evaluation of strain gradients in classical elasticity through the boundary element method. Eur J Mech A/Solids 86:104178

    MathSciNet  Google Scholar 

  • Roque R, Barbosa GF, Guastaldi AC (2021) Design and 3d bioprinting of interconnected porous scaffolds for bone regeneration. An additive manufacturing approach. J Manuf Process 64:655–663

    Google Scholar 

  • Rosa N, Pouca MV, Olhero SM, Jorge RN, Parente M (2023) Influence of structural features in the performance of bioceramic-based composite scaffolds for bone engineering applications: A prediction study. J Manuf Process 90:391–405

    Google Scholar 

  • Samek W, Wiegand T, Müller KR (2017) Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296

  • Schneider GE, Raw MJ (1987) Control volume finite-element method for heat transfer and fluid flow using colocated variables– 1. computational procedure. Numer Heat Trans 11(4):363–390. https://doi.org/10.1080/10407788708913560

    Article  ADS  Google Scholar 

  • Schobi R, Sudret B, Wiart J (2015) Polynomial-chaos-based kriging. Int J Uncertain Quant 5(2)

  • Seddiqi H, Saatchi A, Amoabediny G, Helder MN, Ravasjani SA, Aghaei MSH, Jin J, Zandieh-Doulabi B, Klein-Nulend J (2020) Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3d-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation. Comput Biol Med 124:103826

    CAS  PubMed  Google Scholar 

  • Segal MR (2004) Machine learning benchmarks and random forest regression

  • Selden C, Fuller B (2018) Role of bioreactor technology in tissue engineering for clinical use and therapeutic target design. Bioengineering 5(2):32

    PubMed  PubMed Central  Google Scholar 

  • Shen Y, Huang W, Yan L, Wang Z-g, Xu D-f An automatic visible explainer of geometric knowledge for Aeroshape design optimization based on shap. Aerospace Sci Technol 131, 107993 (2022)

  • Sladkova M, De Peppo GM (2014) Bioreactor systems for human bone tissue engineering. Processes 2(2):494–525

    Google Scholar 

  • Sudret B, Berveiller M, Lemaire M (2004) Stochastic finite elements in linear éelasticity. Mech Rep 332(7):531–537

    Google Scholar 

  • Sudret B, Berveiller M, Lemaire M (2006) A stochastic finite element procedure for moment and reliability analysis. Eur J Comput Mech Revue Européenne de Mécanique Numérique 15(7–8):825–866

    Google Scholar 

  • Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q (2014) Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 3:61–102

    PubMed  PubMed Central  Google Scholar 

  • Van Erven T, Harremos P (2014) Rényi divergence and Kullback-Leibler divergence. IEEE Trans Inf Theory 60(7):3797–3820

    Google Scholar 

  • Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA, et al (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BioMed Res Int

  • Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75–82

    CAS  PubMed  Google Scholar 

  • Wang X, Hirsch C, Kang S, Lacor C (2011) Multi-objective optimization of turbomachinery using improved NSGA-ii and approximation model. Comput Methods Appl Mech Eng 200(9–12):883–895

    ADS  MathSciNet  Google Scholar 

  • Wang C, Huang W, Zhou Y, He L, He Z, Chen Z, He X, Tian S, Liao J, Lu B et al (2020) 3d printing of bone tissue engineering scaffolds. Bioactive Mater 5(1):82–91

    Google Scholar 

  • Wrobel LC, Aliabadi M (2002) The boundary element method: applications in solids and structures

  • Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    MathSciNet  Google Scholar 

  • Xu J, Duraisamy K (2020) Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics. Comput Methods Appl Mech Eng 372:113379

    ADS  MathSciNet  Google Scholar 

  • Yin S, Zhang W, Zhang Z, Jiang X (2019) Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv Healthcare Mater 8(10):1801433

    Google Scholar 

  • Zhang S, Vijayavenkataraman S, Lu WF, Fuh JY (2019) A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3d printing fabrication. J Biomed Mater Res B Appl Biomater 107(5):1329–1351

    CAS  PubMed  Google Scholar 

  • Zhao F, Melke J, Ito K, Rietbergen B, Hofmann S (2019) A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry. Biomech Model Mechanobiol 18:1965–1977

    PubMed  PubMed Central  Google Scholar 

  • Zhao F, Van Rietbergen B, Ito K, Hofmann S (2020) Fluid flow-induced cell stimulation in bone tissue engineering changes due to interstitial tissue formation in vitro. Int J Numer Methods Biomed Eng 36(6):3342

    Google Scholar 

  • Zhao F, Lacroix D, Ito K, Rietbergen B, Hofmann S (2020) Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization. Bone Rep 12:100265

    PubMed  PubMed Central  Google Scholar 

  • Zheng W, Doerr B (2023) Mathematical runtime analysis for the non-dominated sorting genetic algorithm ii (NSGA-ii). Artif Intell

  • Zheng W, Liu Y, Doerr B A first mathematical runtime analysis of the non-dominated sorting genetic algorithm ii (NSGA-ii). In: Proceedings of the AAAI conference on artificial intelligence, vol 36, pp 10408–10416 (2022)

  • Zieliński PS, Gudeti PKR, Rikmanspoel T, Włodarczyk-Biegun MK (2023) 3d printing of bio-instructive materials: toward directing the cell. Bioact Mater 19:292–327

    PubMed  Google Scholar 

Download references

Acknowledgements

This research work is supported by the Hellenic Foundation for Research and Innovation (HFRI) under the “First Call for HFRI. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 2060).

Author information

Authors and Affiliations

Authors

Contributions

GD performed conceptualization, methodology, software, visualization, investigation, validation, and writing—original draft; TG provided conceptualization, methodology, software, investigation, writing—original draft, and writing—review and editing; SP analyzed software, investigation, and writing—review and editing; ST conducted software and supervision; LP revised supervision and writing—review and editing; DP approved funding acquisition, methodology, supervision, and writing–review and editing.

Corresponding authors

Correspondence to George Drakoulas or Theodore Gortsas.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drakoulas, G., Gortsas, T., Polyzos, E. et al. An explainable machine learning-based probabilistic framework for the design of scaffolds in bone tissue engineering. Biomech Model Mechanobiol (2024). https://doi.org/10.1007/s10237-024-01817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10237-024-01817-7

Keywords

Navigation