Skip to main content
Log in

Review of Recent Advances in the Use of Drug Delivery Systems in Ophthalmology

  • REVIEW ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

Eye drops represent the traditional form of medication delivery for the eyes, constituting approximately 90% of the presently available ophthalmic formulations. While they are generally well-received by patients, a significant challenge associated with eye drops is the rapid loss of medication before it reaches the cornea. The creation of new systems and means of drug delivery is important for solving the main problems of medicine – improving the therapeutic efficiency, tolerability, and safety of medical therapy. In the treatment of numerous of eye diseases, the main problem is creating a constant and sufficient concentration of drugs in the lesion due to the peculiarities of the anatomical and physiological structure of the eyeball. New approaches to non-invasive drug delivery are being developed, such as eye implants, contact lenses, as well as drug delivery systems based on nanoparticles, micelles, dendrimers, microneedles and liposomes. In situ gelation systems are also the subject of study and promising developments. Combining drugs within conventional delivery systems has the potential to pave the way for enhanced outcomes and improved therapeutic responses, particularly for systems that have previously shown limited effectiveness. This review discusses current understanding and recent discoveries attributed the utilisation of drug delivery systems in ophthalmology, including the characteristics, advantages, and disadvantages of each class of delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Chen, L., Lymphology, 2009, vol. 42, no. 2, p. 66.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bowling, B., Kanski’s Clinical Ophthalmology: A Systematic Approach, Saunders, W.B., Ed., Amsterdam: Elsevier, 2015, 8th ed.

    Google Scholar 

  3. Budzinskaya, M.V., Verstn. Oftal’mol., 2014, vol. 130, no. 6, p. 56.

    Google Scholar 

  4. Demidova, T.Yu. and Kozhevnikov, A.A., Diabetes Mellitus, 2020, vol. 23., no. 1, p. 95.

    Article  Google Scholar 

  5. Shah-Desai, S.D., Tyers, A.G., and Manners, R.M., Br. J. Ophthalmol., 2000, vol. 84 p. 437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phan, L.T., Hwang, T.N., and McCulley, T.J., Middle East Afr. J. Ophthalmol., 2012, vol. 19, p. 24.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bakhrushina, E.O., Anurova, M.N., Demina, N.B., Lapik, I.V., Turaeva, A.R., and Krasnyuk, I.I., Razrab. Regist. Lek. Sredstv, 2021, vol. 10, no. 1, p. 57.

    CAS  Google Scholar 

  8. Kuroedov, A.V., Brzhesky, V.V., and Krinitsyna, E.A., Russ. Ophthalmol. J., 2019, vol. 12, no. 2, p. 83.

    Google Scholar 

  9. Alyautdin, R.N., Iezhitsa, I.N., and Agarval, R., Vestn. Oftal’mol., 2014, vol. 130, no. 4, p. 117.

    Google Scholar 

  10. Bondarev, A.V. and Zhilyakova, E.T., Pharm. Pharmacol., 2019, vol. 7, no. 1, p. 4.

    Article  Google Scholar 

  11. Anurova, M.N., Bakhrushina, E.O., Lapik, I.V., and Krechetov, S.P., Razrab. Regist. Lek. Sredstv, 2017, vol. 21, no. 4, p. 64.

    Google Scholar 

  12. Koroleva, I.A. and Oganezova, Zh.G., Klin. Oftal’mol., 2016, vol. 16, no. 1, p. 59.

    Google Scholar 

  13. Jumelle, C., Gholizadeh, S., Annabi, N., and Dana, R., J. Controlled Release, 2020, vol. 321, p. 1.

    Article  CAS  Google Scholar 

  14. Shen, J., Gao, H., Chen, L., Jiang, Y., Li, S., Chao, Y., Liu, N., Wang, Y., Wei, T., Liu, Y., Li, J., Chen, M., Zhu, J., Liang, J., Zhou, X., Zhang, X., Gu, P., Chen, Q., and Liu, Z., Sci. Adv., 2023, vol. 9, no. 4, p. 3104.

    Article  ADS  Google Scholar 

  15. FDA warns consumers not to purchase or use EzriCare Artificial Tears due to potential contamination. https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-consumers-not-purchase-or-use-ezricare-artificial-tears-due-potential-contamination.

  16. Vokhmyakov, A.V., Oftal’mol. Zh., 2014, vol. 7, no. 1, p. 41.

    Google Scholar 

  17. Leonardi, A., Van Setten, G., Amrane, M., Ismail, D., Garrigue, J.S., Figueiredo F.C., and Baudouin, C., Eur. J. Ophthalmol., 2016, vol. 26, no. 4, p. 287.

    Article  PubMed  Google Scholar 

  18. Moiseev, R.V., Steele, F., and Khutoryanskiy, V.V., Polyaphron Pharm., 2022, vol. 14, p. 926.

    CAS  Google Scholar 

  19. Huang, Z., Moiseev, R.V., Melides, S.S., Bae, W., Jurewicz, I., Khutoryanskiy, V.V., and Keddie, J.L., Soft Matter, 2023, vol. 19, p. 5513.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Patel, V.R. and Agrawal, Y.K., J. Adv. Pharm. Technol. Res., 2011, vol. 2, no. 2, p. 81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toropainen, E., Fraser-Miller, S.J., Novakovic, D., Del Amo, E.M., Vellonen, K.S., Ruponen, M., Viitala, T., Korhonen, O., Auriola, S., Hellinen, L., Reinisalo, M., Tengvall, U., Choi, S., Absar, M., Strachan, C., and Urtti, A., Pharmaceutics, 2021, vol. 13, no. 4, p. 452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gilmanshin, T.R., Fayzrakhmanov, R.R., and Arslangareeva, I.I., Tochka Zreniya. Vostok–Zapad, 2016, vol. 3, p. 165.

    Google Scholar 

  23. Al-Ghabeish, M., Xu, X., Krishnaiah, Y.S.R., Rahman, Z., Yang, Y., and Khan, M.A., Int. J. Pharm., 2015, vol. 495, p. 783.

    Article  CAS  PubMed  Google Scholar 

  24. Bao, Q., Jog, R., Shen, J., Newman, B., Wang, Y., Choi, S., and Burgess, D.J., Int. J. Pharm., 2017, vol. 523, no. 1, p. 310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herdiana, Y., Wathoni, N., Shamsuddin, S., and Muchtaridi, M., OpenNano, 2022, vol. 7, p. 100048.

  26. Zhang, J., Jiao, J., Niu, M., Gao, X., Zhang, G., Yu, H., Yang, X., and Liu, L., Int. J. Nanomed., 2021, vol. 16, p. 6497.

    Article  Google Scholar 

  27. Berillo, D., Zharkinbekov, Z., Kim, Y., Raziyeva, K., Temirkhanova, K., and Saparov, A., Pharmaceutics, 2021, vol. 13, p. 2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Onugwu, A.L., Nwagwu, C.S., Onugwu, O.S., Echezona, A.C., Agbo, C.P., Ihim, S.A., and Khutoryanskiy, V.V., J. Controlled Release, 2023, vol. 354, p. 465.

    Article  CAS  Google Scholar 

  29. Moiseev, R.V., Morrison, P.W.J., Steele, F., and Khutoryanskiy, V.V., Pharmaceutics, 2019, vol. 11, p. 321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bose, A., Burman, D.R., Sikdar, B., and Patra, P., IET Nanobiotechnol., 2021, vol. 15, no. 1, p. 19.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bikbov, M.M., Khusnutdinov, I.I., Sigaeva, N.N., and Vildanova, R.R., Prakt. Med. Oftal’mol., 2017, vol. 2, p. 38.

    Google Scholar 

  32. Kazybekova, A.V., Aksenova, M.A., and Boyko, I.V., Byull. Sev. Gos. Med. Univ., 2017, p. 76.

  33. Beznos, O.V., Popova, E.V., Tikhomirova, V.E., Pavlenko, T.A., Kost, O.A., and Chesnokova, N.B., Oftal’mologiya, 2021, vol. 18, no. 2, p. 331.

    Article  Google Scholar 

  34. Järvinen, T. and Järvinen, K., Adv. Drug Delivery Rev., 1996, vol. 19, p. 203.

    Article  Google Scholar 

  35. Ulyanov, V.A., Makarova, M.B., Molchanyuk, N.I., Ulyanova, N.A., Skobeeva, V.M., and Chernenko, E.A., Oftal’mol. Zh., 2017, no. 3, p. 63.

  36. Soltani, S., Zakeri-Milani, P., Barzegar-Jalali, M., and Jelvehgari, M., Adv. Pharm. Bull., 2016, vol. 6, p. 345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shkvorchenko, D.O., Refrakts. Khir. Oftal’mol., 2006, vol. 6, no. 2, p. 60.

    Google Scholar 

  38. Ebrahim, S., Peyman, G.A., and Lee, P., J. Surv. Ophthalmol., 2005, vol. 50, no. 2, p. 167.

    Article  Google Scholar 

  39. Chetoni, P., Rossi, S., Burgalassi, S., Monti, D., Mariotti, S., and Saettone, M.F., J. Ocul. Pharmacol. Ther., 2004, vol. 20, no. 2, p. 169.

    Article  CAS  PubMed  Google Scholar 

  40. Singh, M., Singh, M.P., Maiti, S.N., Gandhi, A., Micetich, R.G., and Atwal, H., J Microencapsul., 1993, vol. 10, p. 229.

    Article  CAS  PubMed  Google Scholar 

  41. Danion, A., Arsenault, I., and Vermette, P., J. Pharm. Sci., 2007, vol. 96, no. 9, p. 2350.

    Article  CAS  PubMed  Google Scholar 

  42. Davis, B.M., Normando, E.M., Guo, L., Turner, L.A., Nizari, S., O’Shea, P., Moss, S.E., and Somavarapu, S., Liposomes, 2014, vol. 10, p. 1575.

    CAS  Google Scholar 

  43. Kawakami, S., Harada, A., and Sakanaka, K., Int. J. Pharm., 2004, vol. 278, no. 2, p. 255.

    Article  CAS  PubMed  Google Scholar 

  44. Peeters, L., Sanders, N.N., and Braeckmans, K., Invest. Ophthalmol. Visual Sci., 2005, vol. 46, no. 10, p. 3553.

    Article  Google Scholar 

  45. Hathout, R.M., Mansour, S., Mortada, N.D., and Guinedi, A.S., AAPS PharmSciTech, 2007, vol. 8, no. 1, p. 1.

    Article  PubMed  Google Scholar 

  46. Zhang, R., He, R., Qian, J., Guo, J., Xue, K., and Yuan, Y.F., Invest. Ophthalmol. Visual Sci., 2010, vol. 51, p. 3575.

    Article  Google Scholar 

  47. Dai, Y., Zhou, R., Liu, L., Lu, Y., Qi, J., and Wu, W., Int. J. Nanomed., 2022, vol. 20138, p. 1921.

    Google Scholar 

  48. Fukushima, A., Ozaki, A., Ishida, W., van Rooijen, N., Fukata, K., and Ueno H., Cell Biol., 2005, vol. 29, no. 4, p. 277.

    CAS  Google Scholar 

  49. Moiseev, R.V., Kaldybekov, D.B., Filippov, S.K., Radulescu, A., and Khutoryanskiy, V.V., Langmuir, 2022, vol. 38, no. 45, p. 13870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mishra, G.P., Bagui, M., Tamboli, V., and Mitra, A.K., J. Drug Delivery, 2011, vol. 2011, p. 863734.

  51. Dmitruk, O., Abashkin, V., and Shcherbin, D., Zakonomernosti vzaimodeistviya dendrimerov s biologicheskimi strukturami (Patterns of Interaction of Dendrimers with Biological Structures), Minsk: Beloruss. Nauka, 2022, vol. 209.

  52. Popova, E.V., Krivorotov, D.V., Gamazkov, R.V., and Radilov, A.S., Med. Ekstrem. Situatsii, 2022, p. 20.

    Google Scholar 

  53. Madaan, K., Kumar, S., Poonia, N., Lather, V., and Pandita, D., J. Pharm. Bioallied Sci., 2014, vol. 6, no. 3, p. 139.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Albertazzi, L., Serresi, M., Albanese, A., and Beltram, F., Mol. Pharm., 2010, vol. 7, no. 3, p. 680.

    Article  CAS  PubMed  Google Scholar 

  55. Loftsson, T., Sigurdsson, H.H., Hreinsdóttir, D., Konradsdottir, F., and Stefansson, E., J. Inclusion Phenom. Macrocyclic Chem., 2007, vol. 57, nos. 1–4, p. 585

    Article  CAS  Google Scholar 

  56. Rodríguez Villanueva, J., Rodríguez Villanueva, L., and Guzmán Navarro, M., Int J Pharm., 2017, vol. 516, nos. 1–2, p. 342.

    Article  PubMed  Google Scholar 

  57. Coursey, T.G., Henriksson, J.T., Marcano, D.C., Shin, C.S., Isenhart, L.C., Ahmed, F., De Paiva, C.S., Plugfelder, S.C., and Acharya, G., J. Controlled Release, 2015, vol. 213, p. 168.

    Article  CAS  Google Scholar 

  58. Soiberman, U., Kambhampati, S., Wu, T., Mishra, M., Oh, Y., Sharma, R., Wang, J., Al Towerki, A., Yiu, S., Stark, W., and Kannan, R., Biomaterials, 2017, vol. 125, p. 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yavuz, B., Pehlivan, S.,B., Vural, I., and Unlu, N., J. Pharm. Sci., 2015, vol. 104, no. 11, p. 3814.

    Article  CAS  PubMed  Google Scholar 

  60. Maulvi, F.A., Soni, T.G., and Shah, D.O., Drug Delivery, 2016, vol. 23, p. 3017.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, X., Cao, X., and Qi, P., J. Biomater. Sci. Polym. Ed., 2020, vol. 31, p. 549.

    Article  CAS  PubMed  Google Scholar 

  62. Alvarez-Lorenzo, C., Hiratani, H., and Concheiro, A., Am. J. Adv. Drug Delivery, 2006, vol. 4, p. 131.

    Article  CAS  Google Scholar 

  63. Pillay, R., Hansraj, R., and Rampersad, N., Clin. Optom., 2020, vol. 12, p. 57.

    Article  Google Scholar 

  64. Naplekov D.K., Zhilyakova E.T., Malyutina A.Yu., Bondarev A.V., Demina N.B., Novikov O.O., and Abramovich, R.A., Razrab. Regist. Lek. Sredstv, 2020, vol. 9, no. 4, p. 59.

    CAS  Google Scholar 

  65. Zhilyakova, E.T., Naplekov, D.K., Fadeeva, D.A., Avtina, N.V., and Malyutina, A.Yu., Proc. III Int. Symp. “Innovations in Life Sciences,” Belgorod, 2021, p. 112.

  66. Xu, J., Ge, Y., Bu, R., Zhang, A., Feng, S., Wang, J., Gou, J., Yin, T., He, H., and Zhang, Y., J. Controlled Release, 2019, vol. 305, p. 18.

    Article  CAS  Google Scholar 

  67. Peral, A., Martinez-Aguila, A., Pastrana, C., Huete-Toral, F., Carpena-Torres, C., and Carracedo, G., Appl. Sci., 2020, vol. 10, p. 151.

    Article  Google Scholar 

  68. Ciolino, J.B., Ross, A.E., Tulsan, R., Watts, A.C., Wang, R.-F., Zurakowski, D., Serle, J.B., and Kohane, D.S., Ophthalmology, 2016, vol. 123, p. 2085.

    Article  PubMed  Google Scholar 

  69. Kim, J. and Chauhan, A., Int. J. Pharm., 2008, vols. 1–2, p. 205.

    Google Scholar 

  70. Ghasemi Falavarjani, K., J. Ophthalmol. Visual Res., 2009, vol. 4, no. 3, p. 191.

    Google Scholar 

  71. Tultseva, S.N., Nechiporenko, P.A., and Titarenko, A.I., Oftal’mol. Vestn., 2014, vol. 7, no. 3, p. 5.

    Google Scholar 

  72. Artemyeva, O.V., Samoilov, A.N., and Zhernakov, S.V., Klin. Oftal’mol., 2013, vol. 14, no. 3, p. 104.

    Google Scholar 

  73. Belyi, Y.A., Novikov, S.V., Kolesnik, A.I., and Kolesnik S.V., Vestn. Tambov. Univ., 2014, vol. 19, no. 4, p. 1086.

    Google Scholar 

  74. Kuroedov, A.V., Gorodnichy, V.V., Kondrakova, I.V., Gaponko, O.V., Zakharova, M.A., Ogorodnikova, V.Yu., and Fomin, N.E., Klin. Oftal’mol., 2015, vol. 16, no. 2, p. 64.

    Google Scholar 

  75. Ashton, P., Brown, J.D., Pearson, P.A., J. Ocul. Pharmacol., 1992, vol. 8, p. 343.

    Article  CAS  PubMed  Google Scholar 

  76. Jaffe, G.J., Ben-Nun, J., and Guo, H., Ophthalmology, 2000, vol. 107, p. 2024.

    Article  CAS  PubMed  Google Scholar 

  77. Callanan, D.G., Jaffe, G.J., and Martin, D.F., Arch. Ophthalmol., 2008, vol. 126, p. 1191.

    Article  PubMed  Google Scholar 

  78. Pavesio, C., Zierhut, M., and Bairi, K., Ophthalmology, 2010, vol. 117, p. 567.

    Article  PubMed  Google Scholar 

  79. Campochiaro, P.A., Nguyen, Q.D., and Hafiz, G., Ophthalmology., 2013, vol. 120, p. 583.

    Article  PubMed  Google Scholar 

  80. Friedman, D.S., Holbrook, J.T., and Ansari, H., Ophthalmology, 2013, vol. 120, p. 1571.

    Article  PubMed  Google Scholar 

  81. Wang, J., Jiang, A., Joshi, M., and Christoforidis, J.J. Mediators Inflamm., 2013, vol. 2013, p. 780634.

  82. Tan, D.T.H, Chee, S.P., and Lim, L., Ophthalmology, 2001, vol. 108, p. 2172.

    Article  CAS  PubMed  Google Scholar 

  83. Thakur Singh, R.R., Tekko, I., McAvoy, K., McMillan, H., Jones, D., and Donnelly, R.F., Expert Opin. Drug Delivery, 2017, vol. 14, no. 4, p. 525.

    Article  CAS  Google Scholar 

  84. Prausnitz, M.R., Jiang, J., Patel, S.R., Gill, H.S., Ghate, D., McCarey, B.E., Geroski, D.H., and Edelhauser, H.F., Invest. Ophthalmol. Visual Sci., 2007, vol. 48, p. 3191.

    Google Scholar 

  85. Kim, Y.C., Grossniklaus, H.E., Edelhauser, H.F., and Prausnitz, M.R., Invest. Ophthalmol. Visual Sci., 2014, vol. 11, p. 7376.

    Article  Google Scholar 

  86. Xu, X.D., Liang, L., Cheng, H., Wang, X.H., Jiang, F.G., Zhuo, R.X., and Zhang, X.Z. J. Mater. Chem., 2012, vol. 22, no. 35, p. 18164.

    Article  CAS  Google Scholar 

  87. Liang, R., Luo, Z., Pu, G., Wu, W., Shi, S., Yu, J., and Li, X., RSC Adv., 2016, vol. 6, no. 80, p. 76093.

    Article  ADS  CAS  Google Scholar 

  88. Yu, X., Zhang, Z., Yu, J., Chen, H., and Li, X., Nanomed.: Nanotechnol., 2018, vol. 14, no. 1, p. 185.

    Article  CAS  Google Scholar 

  89. Berillo, D.A., Sintez, svoistva i biologicheskaya aktivnost' proizvodnykh gidrazidov i tiosemikarbazidov (Synthesis, Properties, and Biological Activity of Derivatives of Hydrazides and Thiosemicarbazides), Almaty, 2023.

    Google Scholar 

  90. Pan, M., Ren, Z., Ma, X., Chen, L., Lv, G., Liu, X., Li, S., Li, X., and Wang, J., Acta Biomater., 2023, vol. 167, p. 195.

    Article  CAS  PubMed  Google Scholar 

  91. Rieke, E.R., Amaral, J., Becerra, S.P., and Lutz, R.J., J. Ocul. Pharmacol. Ther., 2010, vol. 26, p. 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kang Derwent, J.J. and Mieler, W.F., Trans. Am. Ophthalmol. Soc., 2008, vol. 106, p. 206.

    PubMed  PubMed Central  Google Scholar 

  93. Liang, L., Jun, Y., Qinghua, L., Ming, H., Fagang, J., Xiaoding, X., and Xianzheng, Z., J. Biomater. Nanobiotechnol., 2011, vol. 2, no. p. 622.

  94. Constantinou, A.,P., Nele, V., Doutch, J.J., Correia, J.S., Moiseev, R.V., Cihova, M., Gaboriau, D.C.A., Krell, J., Khutoryanskiy, V.V., Stevens, M.M., and Georgiou, Th.K., Macromolecules, 2022, vol. 55, p. 1783.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was carried out within the framework of the study “National Program of Personalized and Preventive Medicine” project of the Ministry of Education and Science of the Republic of Kazakhstan OR12165486, 2021–2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Berillo.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berillo, D., Kadyrgaliev, B. Review of Recent Advances in the Use of Drug Delivery Systems in Ophthalmology. rev. and adv. in chem. 13, 167–183 (2023). https://doi.org/10.1134/S2634827623600081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827623600081

Keywords:

Navigation