Skip to main content
Log in

Prospective Components of Rocket Propellant. I. Oxidizers

  • REVIEW ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

The review focuses on the latest advancements in chlorine-free oxidizers for solid rocket propellants as of January 1, 2023. The properties and applications of phase-stabilized ammonium nitrate, ammonium dinitramide, and compounds with trinitromethyl and trinitroethyl groups as high-density explosive materials, plasticizers, and components of solid rocket propellants are discussed. Formulations of rocket propellants containing these components, along with their physicomechanical properties, ballistic characteristics, and chemical stability indicators, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Zlotin, P.G., Dalinger, I.L., Makhova, N.N., and Tartakovsky, V.A., Russ. Chem. Rev., 2020, vol. 89, no. 1, p. 1.

    Article  ADS  CAS  Google Scholar 

  2. Sakovich, G.V., Zharkov A.S., and Yaskin, A.V., Rodina, 2009, no. 12, p. 62.

  3. Lempert, D.B., Din. Sist., Mekh. Mashin, 2012, no. 2, p. 155.

  4. Nielsen, A.T., Christian, S.L., Moore, D.W., Gilardi, R.D., and George, C.F., J. Org. Chem., 1987, vol. 52, no. 9, p. 1656.

    Article  CAS  Google Scholar 

  5. Yaskin, A.V., Konstruktsii i otrabotka raketnykh dvigatelei na tverdom toplive (Design and Development of Solid Fuel Rocket Engines), Yaskin, A.V., Ed., Biisk: Alt. Gos. Tekh. Univ., 2010.

  6. Ren, X.X., Zhao, F.Q., and Zhen, B., Winged Missiles J., 2007, no. 12, p. 53.

  7. Porokha, topliva, zaryady (Gun Powders, Fuels, Charges), vol. 2, Alikin, V.N., Lipanov, A.M., Serebrennikov, S.Yu., Sokolovskii, M.I., and Strel’nikov, V.N. Moscow: Khimiya, 2004.

  8. Strategicheskie raketnye kompleksy nazemnogo bazirovaniya (Strategic Ground-Based Missile Systems), Moscow: Voennyi Parad, 2007.

  9. Brower, D.B. and Losse, L.A., Asto Tehnology, Inc.: Jannaf 49th. Propellant development, Houston, TX, 1999, p. 131.

  10. Lempert, D.B., Nechiporenko, G.N., and Manelis, G.V., Kosm. Vyzov 21 Veka, 2010, vol. 4, p. 412.

  11. Klapötke, T.M., Chemistry of High-Energy Materials, Berlin: de Gruyter, 2012, 2nd ed.

  12. Sutton, G.P., Rocket Propulsion Elements, New York: Wiley, 2001, 7th ed.

    Google Scholar 

  13. Cooper, P.W., Explosives Engineering, Weinheim: Wiley, 1996.

    Google Scholar 

  14. Ang, H.G. and Pisharath, S., Energetic Polymers, Binders and Plasticisers for Enhancing Performance, Weinheim: Wiley, 2012.

    Google Scholar 

  15. Moore, T., Proc. 33rd Joint Propulsion Conference and Exhibition, 1997, p. 3137.

  16. Vo, T.T., Parrish, D.A., and Shreeve, J.M., J. Am. Chem. Soc., 2014, vol. 136, p. 11934.

    Article  CAS  PubMed  Google Scholar 

  17. Brinck, T., Green Energetic Materials, Weinheim: Wiley, 2014.

    Book  Google Scholar 

  18. Kettner, M.A. and Klapotke, T.M., in Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, De Luca, L., Shimada, T., Sinditskii, V., Calabro, M., Eds., Springer Aerospace Technology, Cham: Springer, 2017, p. 12.

  19. DeLuca, L.T., Shimada, T., Sinditskii, V.P., Calabro, M., and Manzara, A.P., in Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, De Luca, L., Shimada, T., Sinditskii, V., Calabro, M., Eds., Springer Aerospace Technology, Cham: Springer, 2017, p. 9.

  20. Klapötke, T.M., Chemistry of High-Energy Materials, Berlin: de Gruyter, 2012, 2nd ed.

  21. Pan, J.A., Li, H., Qin, Y.J., et al., Chemistry, 2017, vol. 80, no. 2, p. 139.

    CAS  Google Scholar 

  22. Popok, V.N., Smesevye kondensirovannye khimicheskie topliva na osnove nitrata ammoniya. Printsipy komponovki i svoistva (Blended Condensed Chemical Fuels Based on Ammonium Nitrate. Composition Principles and Properties) Barnaul: Alt. Gos. Tekh. Univ., 2014.

  23. Jos, J. and Mathew, S., Crit. Rev. Solid State Mater. Sci., 2017, vol. 42, no. 6, p. 470.

    Article  ADS  CAS  Google Scholar 

  24. Engel, W. and Menke, K., Def. Sci. J., 1996, vol. 46, p. 311.

    Article  Google Scholar 

  25. US Patent 3018164, 1962.

  26. Sudhakar, A.R. and Mathew, S., Thermochim. Acta, 2006, vol. 451, p. 5.

    Article  CAS  Google Scholar 

  27. US Patent 5071630, 1991.

  28. US Patent 3018164, 1962.

  29. Golovina, N.I., Nechiporenko, G.N., Nemtsev, G.G., Dolganova, G.P., Roshchupkin, V.P., Lempert, D.B., and Manelis, G.B., Russ. J. Appl. Chem., 2007, vol. 80, no. 1, p. 24.

    Article  CAS  Google Scholar 

  30. Golovina, N., Nechiporenko, G., Nemtsev, G., Zyuzin, I., Manelis, G.B., and Lempert, D., Cent. Eur. J. Energ. Mater., 2009, vol. 6, p. 45.

    CAS  Google Scholar 

  31. Lang, A.J., and Vyazovkin, S., J. Phys. Chem. B, 2008, vol. 112, p. 11236.

    Article  CAS  PubMed  Google Scholar 

  32. Yeager, J.D., Chellappa, R., Singh, S., and Majewski, J., Mater. Today Commun., 2015, vol. 3, p. 1.

    Article  CAS  Google Scholar 

  33. Hu, D., Chen, J., Ye, X., Li, L., and Yang, X., Atmos. Environ., 2011, vol. 45, p. 2349.

    Article  ADS  CAS  Google Scholar 

  34. Damse, R., Def. Sci. J., 2004, vol. 54, p. 483.

    Article  CAS  Google Scholar 

  35. US Patent 5292387, 1994.

  36. US Patent 5071630, 1991.

  37. Fabbiani, F.P. and Pulham, C.R., Chem. Soc. Rev., 2006, vol. 35, p. 932.

    Article  CAS  PubMed  Google Scholar 

  38. US Patent 2077469, 1937.

  39. US Patent 5726382, 1998.

  40. Zhang, J., Wang, X., and Lin, D., Adv. Fine Petrochem., 2008, vol. 12, p. 16.

    Google Scholar 

  41. Elzaki, B.I. and Zhang, Y.J., Materials, 2016, vol. 9, no. 7, p. 502.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Nagayama, S., Katoh, K., Higashi, E., Hayashi, M., Kumagae, K., Habu, H., Wada, Y., Nakano, K., and Arai, M., Propellants, Explos., Pyrotech., 2015, vol. 40, no. 4, p. 544.

    Article  CAS  Google Scholar 

  43. Elzaki, B.I. and Zhang, J., Def. Technol., 2019, vol. 15, no. 4, p. 615.

    Article  Google Scholar 

  44. Xiong, X. and Liu, Z., Chin. J. Explos. Propellants, 2013, vol. 36, p. 50.

    CAS  Google Scholar 

  45. Zhang, Y., Li, J., Yang, R., Zhu, L., and Zhao, X., Jpn. Soc. Radiol. Technol., 2011, vol. 34, p. 86.

    Google Scholar 

  46. Naya, T. and Kohga, J., Energ. Mater., 2014, vol. 33, p. 73.

    Article  Google Scholar 

  47. Sinditskii, V.P., Egorshev, V.Y., Levshenkov, A.I., and Serushkin, V.V., Propellants, Explos., Pyrotech., 2005, vol. 30, p. 269.

    Article  CAS  Google Scholar 

  48. Kondrikov, B., Annikov, V., Egorshev, V.Y., DeLuca, L., and Bronzi, C., J. Propul. Power, 1999, vol. 15, no. 6, p. 763.

    Article  CAS  Google Scholar 

  49. Popok, V.N. and Bychin, N.V., Nanotechnol. Russ., 2014, vol. 9, nos. 9–10, p. 541.

    Article  CAS  Google Scholar 

  50. Sinditskii, V.P., Egorshev, V.Y., Tomasi, D., and DeLuca, L.T., J. Propul. Power, 2008, vol. 24, p. 81.

    Article  Google Scholar 

  51. Signoriello, D., Galfetti, L., De Luca, L.T., Cianfanelli, S., Klyakin, G.F., Sinditskii, V.P., Babuk, V.A., and Vorozhtsov, A.B., Eur. Space Agency, 2006, Spec. Publ. SP-635, deluca02/1.

  52. Zhang, J. and He, J., Hanneng Cailiao, 2005, vol. 13, p. 401.

    Google Scholar 

  53. Mathew, S. Krishnan, K., and Ninan, K.N., Propellants, Explos., Pyrotech., 1998, vol. 23, p. 150.

    Article  CAS  Google Scholar 

  54. Kohga, M. and Naya, T., J. Energ. Mater., 2015, vol. 33, p. 573.

    Article  Google Scholar 

  55. Zhao, J.-B., Hou, L.-F., and Zhang, X.-P., Prog. Astronaut. Aeronaut, 2000, vol. 185, p. 413.

    CAS  Google Scholar 

  56. Menke, K., Boehnlein-Mauss, J., and Schubert, H., Propellants, Explos., Pyrotech., 1996, vol. 21, p. 139.

    Article  CAS  Google Scholar 

  57. Nagamachi, M.Y., Oliveira, J.I.S., Kawamoto, A.M., and Dutram, R.C.L.J., Aerosp. Technol. Manage., 2009, vol. 1, no. 1, p. 153.

    Article  CAS  Google Scholar 

  58. Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, De Luca, L., Shimada, T., Sinditskii, V., Calabro, M., Eds., Springer Aerospace Technology, Cham: Springer, 2017, p. 66.

    Google Scholar 

  59. Bottaro, J.C., Penwell, P.E., and Schmitt, R.J., J. Am. Chem. Soc., 1997, vol. 119, p. 9405.

    Article  CAS  Google Scholar 

  60. Chen, F.-Y., Xuan, C.-L., Lu, Q.-Q., Xiao, L., Yang, J.-Q., Hu, Y.-B., Zhang, G.-P., Wang, Y.-L., Zhao, F.-Q., Hao, G.-Z., and Jiang, W., Def. Technol., 2022, vol. 19, no. 1, p. 163.

    Article  Google Scholar 

  61. Kumar, P., Indian Chem. Eng., 2020, vol. 62, no. 3, p. 232.

    CAS  Google Scholar 

  62. Michels, H.H. and Montgomery, J.A., Jr., J. Phys. Chem., 1993, vol. 97, p. 6602.

    Article  CAS  Google Scholar 

  63. Venkatachalam, S., Santhosh, G., and Ninan Ninan, K., Propellants, Explos., Pyrotech., 2004, vol. 29, p. 178.

    Article  CAS  Google Scholar 

  64. China Patent CN102731345A, 2012.

  65. Wingborg, N., J. Chem. Eng. Data, 2006, vol. 51, no. 5, p. 1582.

    Article  CAS  Google Scholar 

  66. Cui, J., Han, J., Wang, J., and Huang, R., J. Chem. Eng. Data, 2010, vol. 55, no. 9, p. 3229.

    Article  CAS  Google Scholar 

  67. Teipel, U., Heintz, T., and Krause, H.H., Propellants, Explos., Pyrotech., 2000, vol. 25, no. 2, p. 81.

    Article  CAS  Google Scholar 

  68. Qiao, S., Li, H.-Z., and Yang, Z.-W., Energ. Mater. Front., 2022, vol. 3, no. 2, p. 84.

    Article  CAS  Google Scholar 

  69. Ren, Z., Chen, X., Yu, G., Wang, Y., Chen, B., and Zhou, Z., CrystEngComm, 2022, vol. 22, p. 5237. https://doi.org/10.1039/d0ce00602e

    Article  CAS  Google Scholar 

  70. Ramaswamy, A., Combust., Explos. Shock Waves, 2000, vol. 36, p. 119.

    Article  Google Scholar 

  71. Heintz, T., Pontius, H., Aniol, J., Birke, C., Leisinger, K., and Reinhard, W., Propellants, Explos., Pyrotech., 2009, vol. 34, p. 231.

    Article  CAS  Google Scholar 

  72. Teipel, U., Energetic Materials-Particle Processing and Characterization, Weinheim: Wiley, 2005, p. 19.

    Google Scholar 

  73. Keicher, T., Kuglstatter, W., Eisele, S., Wetzel, T., and Krause, H., Proc. 39th Int. Annual Conference of ICT, Karlshure, 2008.

  74. Pontius, H., Bohn, M.A., and Aniol, J., Proc. 39th Int. Annual Conference of ICT, Karlshure, 2008, p. 72.

  75. Lu, X.M., Mo, H.C., Chen, B., et al., Chin. J. Energ. Mater., 2016, vol. 24, no. 11, p. 1080.

    CAS  Google Scholar 

  76. Lobbecke, S., Krause, H., and Pfeil, A., Proc. 28th Int. Annual Conference of ICT, Karlsruhe, 1997.

  77. Trammell, S., Goodson, P.A., and Sullivan, B.P., Inorg. Chem., 1996, vol. 35, no. 6, p. 1421.

    Article  CAS  PubMed  Google Scholar 

  78. Johansson, M., Wingborg, N., Johansson, J., Liljedahl, M., Lindborg, A., and Sjcblom, M., Proc. Insensitive Munitions and Energetic Materials Technology Symposium, 2013, p. 7.

  79. Heintz, T. and Herrmann, M.J., Propellants, Explos., Pyrotech., 2019, vol. 44, p. 679.

    Article  CAS  Google Scholar 

  80. Östmark, H. et al., Proc. 12th Int. Detonation Symposium, San Diego, 2002.

  81. Comet, M., Schwartz, C., Schnell, F., et al., Propellants, Explos., Pyrotech., 2021, vol. 46, no. 5, p. 42.

    Google Scholar 

  82. Venkatachalam, S., Santhosh, G., and Ninan Ninan,K., Propellants, Explos., Pyrotech., 2004, vol. 29, no. 3, p. 178.

    Article  CAS  Google Scholar 

  83. Meyer, J. and Kohler, A., Homburg Explosives, Weinheim: Wiley, 2007. https://doi.org/10.1002/9783527617043

    Book  Google Scholar 

  84. Kumar, P., Def. Technol., 2018, vol. 14, p. 661.

    Article  Google Scholar 

  85. Jones, D., Kwok, Q., Vachon, M., Badeen, C., and Ridley, W., Propellants, Explos., Pyrotech., 2005, vol. 30.

  86. Comet, M., Schwartz, C., Schnell, F., Oudot, F., Lallemand, B., and Spitzer, D., Propellants, Explos., Pyrotech., 2021, vol. 46, p. 742.

    Article  CAS  Google Scholar 

  87. Comet, C., Schwartz, F., Oudot, F., and Schnell, D., Spitzer, Propellants, Explos., Pyrotech., 2020, vol. 45, p. 1600.

    Article  CAS  Google Scholar 

  88. https://integral-russia.ru/2020/07/20/raketnoe-toplivo-vse-chto-vy-hoteli-by-ob-etom-znat/.

  89. de Flon, J., Andreasson, S., Liljedahl, M., et al., Proc. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, 2011, p. 1.

  90. Li, G., Wang, J., Ren, X.T., et al., Chin. J. Energ. Mater., 2021, vol. 44, no. 5, p. 622.

    Google Scholar 

  91. Menke, K., Heintz, T., Schweikert, W., Keicher, T., and Krause, H., Propellants, Explos., Pyrotech., 2009, vol. 34, p. 218.

    Article  CAS  Google Scholar 

  92. Cerri, S., Bohn, M.A., Menke, K., et al., Propellants, Explos., Pyrotech., 2014, vol. 39, no. 2, p. 192.

    Article  CAS  Google Scholar 

  93. Cerri, S. and Bohn, M.A., Proc. 42th Int. Annual Conference of ICT, 2011.

  94. Gettwert, V., Fischer, S., and Menke, K., Proc. 44th Int. Annual Conference of ICT, 2013.

  95. Johansson, M., Wingborg, N., Johansson, J., et al., Proc. Insensitive Munitions and Energetic Material Technology Symposium, 2013.

  96. Rossi, M.J., Bottaro, J.C., and McMillen, D.F., Int. J. Chem. Kinet., 1993, vol. 25, p. 549.

    Article  CAS  Google Scholar 

  97. Luk’yanov, O.A., Agevnin, A.R., Leichenko, A.A., Seregina, N.M., and Tartakovsky, V.A., Russ. Chem. Bull., 1995, vol. 44, p. 108.

    Article  Google Scholar 

  98. US Patent 5254324, 1993.

  99. Zhang, X., Liu, Y., Wang, F., and Gong, X., Asian J., 2013, vol. 9, no. 1, p. 229.

    Article  Google Scholar 

  100. Williams, G. and Brill, T., Combust. Flame, 1995, vol. 102, p. 418.

    Article  ADS  CAS  Google Scholar 

  101. Kon’kova, T., Matyushin, Y.N., Miroshnichenko, E., and Vorob’ev, A., Russ. Chem. Bull., 2009, vol. 58, p. 2020.

    Article  Google Scholar 

  102. http://www.dtic.mil/dtic/tr/fulltext/u2/a261496.pdf.

  103. Zhang, X., Liu, Y., Wang, F., and Gong, X., Chem. Asian J., 2014, vol. 9, p. 229.

    Article  PubMed  Google Scholar 

  104. Hiroki Matsunaga, Katsumi Katoh, Hiroto Habu, and Atsumi Miyake, Trans. Jpn. Soc. Aeronaut. Sp. Sci., Aerosp. Technol. Jpn., 2019, vol. 16, no. 1, p. 88.

    Article  Google Scholar 

  105. UNIDO and International Fertilizer Development Center, Fertilizer Manual, Berlin: Kluwer,1998.

  106. Matsunaga, H., Habu, H., and Miyake, A., Sci. Technol. Energ. Mater., 2017, vol. 78, p. 65.

    Google Scholar 

  107. Matsunaga, H., Katoh, K., and Habu, H., J. Therm. Anal. Calorim., 2019, vol. 135, p. 2677.

    Article  CAS  Google Scholar 

  108. Wingborg, N., J. Chem. Eng. Data, 2006, vol. 51, no. 5, p. 1582.

    Article  CAS  Google Scholar 

  109. Cui, J., Han, J., Wang, J., and Huang, J., Chem. Eng. Data, 2010, vol. 55, no. 9, p. 3229.

    Article  CAS  Google Scholar 

  110. Rahm, M., Dvinskikh, S.V., Furo, I., and Brinck, T., Angew. Chem., Int. Ed., 2011, vol. 50, p. 1145.

    Article  CAS  Google Scholar 

  111. Montgomery, J.A. and Michels, H.H., J. Phys. Chem., 1993, vol. 97, no. 26, p. 6774.

    Article  CAS  Google Scholar 

  112. Yaempongsa, D., Brinck, A., and Brinck, T., Propellants, Explos., Pyrotech., 2021, vol. 46, no. 2, p. 245.

    Article  CAS  Google Scholar 

  113. Petrie, M.A., Sheehy, J.A., Boatz, J.A., and Rasul, G., Surya Prakash, G.K., Olah, G.A. and Christe, K.O., J. Am. Chem. Soc., 1997, vol. 119, no. 38, p. 8802.

    Article  CAS  Google Scholar 

  114. Belanger-Chabot, G., Rahm, M., Haiges, R., and Christe, K.O., Angew. Chem., Int. Ed., 2015, vol. 54, p. 11730.

    Article  CAS  Google Scholar 

  115. Rahm, M., Belanger-Chabot, G., Haiges, R., and Christe, K.O., Angew. Chem., Int. Ed., 2014, vol. 53, p. 6893.

    Article  CAS  Google Scholar 

  116. Korkin, A.A. and Bartlett, R.J., J. Am. Chem. Soc., 1996, vol. 118, p. 12244.

    Article  CAS  Google Scholar 

  117. Li, J., Propellants, Explos., Pyrotech., 2008, vol. 33 p, p. 443.

  118. Christe, K.O., Wilson, W.W., Bélanger-Chabot, G., Haiges, R., Boatz, J.A., Rahm, M., Surya Prakash, G.K., Saal, T., and Hopfinger, M., Angew. Chem., 2014, vol. 127, no. 4, p. 1332.

    Article  ADS  Google Scholar 

  119. Lempert, D.B., Nechiporenko, G.N., and Soglasnova, S.I., Combust., Explos, Shock Waves, 2009, vol. 45, no. 2, p. 160.

    Article  Google Scholar 

  120. Talawar, M.B., Sivabalan, R., Asthana, S.N., et al., Combust., Explos, Shock Waves, 2005, vol. 41, no. 3, p. 264.

    Article  Google Scholar 

  121. Zarko, V.E., Combust., Explos, Shock Waves, 2010, vol. 46, no. 2, p. 121.

    Article  Google Scholar 

  122. Türker, L., Def. Technol., 2018, vol. 14, no. 1, p. 19.

    Article  Google Scholar 

  123. Türker, L., Def. Technol., 2019, vol. 15, no. 2, p. 154.

    Article  Google Scholar 

  124. Lang, Q., Lin, Q., Wang, P., Xu, Y., and Lu, M., Front. Chem., 2022, vol. 10, p. 993036.

  125. Eaton, P.E., Gilardi, R.L., and Zhang, M.X., Adv. Mater., 2000, vol. 12, no. 15, p. 1143.

    Article  CAS  Google Scholar 

  126. Lang, Q., Sun, Q., Wang, Q., Lin, Q., and Lu, M., J. Mater. Chem. A, 2020, vol. 8, no. 23, p. 11752.

    Article  CAS  Google Scholar 

  127. Christe, K.O., Wilson, W.W., Sheehy, J.A., and Boatz, J.A., Angew. Chem., Int. Ed., 1999, vol. 38, no. 13, p. 2180.

    Article  Google Scholar 

  128. Christe, K.O., Science, 2017, vol. 355, no. 6323, p. 351.

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Wang, P., Xu, Y., Lin, Q., and Lu, M., Chem. Soc. Rev., 2018, vol. 47, no. 20, p. 7522.

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Vij, A., Wilson, W.W., Vij, V., Tham, F.S., Sheehy, J.A., and Am, K.O., J. Chem. Soc., 2001, vol. 123, no. 26, p. 6308.

    Article  CAS  Google Scholar 

  131. Wilson, W.W., Vij, A., Vij, V., Bernhardt, E., and Christe, K.O., Chem.—Eur. J., 2003, vol. 9, no. 12, p. 2840.

    Article  CAS  Google Scholar 

  132. Zhang, C., Sun, C., Hu, B., Yu, C., and Lu, M., Science, 2017, vol. 355, p. 374.

    Article  ADS  CAS  PubMed  Google Scholar 

  133. Tian, L., Li, D., Wang, P., and Lu, M., J. Mater. Chem. A, 2019, vol. 7, no. 20, p. 12468.

    Article  Google Scholar 

  134. Xu, Y., Ding, L., Yang, F., Li, D., Wang, P., Lin, Q., et al., Chem. Eng. J., 2022, vol. 429, p. 132399.

  135. Lin, Q., Wang, P., Xu, Y., and Lu, M., Mater. Eng., 2020, vol. 6, no. 9, p. 964.

    CAS  Google Scholar 

  136. Wozniak, D.R. and Piercey, D.G., Engineering, 2020, vol. 6, no. 9, p. 981.

    Article  CAS  Google Scholar 

  137. Xu, Y., Li, D., Tian, L., Jiang, Z., Wang, P., and Lu, M., Chin. J. Energ. Mater., 2020, vol. 28, no. 8, p. 718.

    CAS  Google Scholar 

  138. Kon’kova, T.S. and Matyushin, Y.N., Russ. Chem. Bull., 1998, vol. 47, p. 2371.

    Article  Google Scholar 

  139. Kiselev, V.G. and Gritsan, N.P., J. Phys. Chem. A, 2009, vol. 113, no. 41, p. 11067.

    Article  CAS  PubMed  Google Scholar 

  140. Miroshnichenko, E.A., Lebedev, Yu.A., Shevelev, S.A., Gulevskaya, V.I., Fainzil’berg, A.A., and Apin, A.Ya., Zh. Fiz. Khim., 1967, vol. 41, p. 1488.

    CAS  Google Scholar 

  141. US Patent 3378594, 1968.

  142. Dendage, P.S., Sarwade, D.B., Asthana, S.N., and Singh, H., J. Energ. Mater., 2001, vol. 19, no. 1, p. 41.

    Article  ADS  CAS  Google Scholar 

  143. Hideo, H., Toshio, O., Seiichi, O.K., and Shigeru, S., Proc. Int. Pyrotechnic Seminar in 20th Conf., 1994, p. 397.

  144. Meulenbrugge, J., Steen, A.V.D., and Hyden, A.V.D., Proc. Int. Symp. Energ. Mater., Techno, 1995, p. 291.

  145. Hordijk, A.C., Mu, J.M., Meulenbrugge, J.J., Korting, P.A.O.G., van Lit, P.L., Schnorbk, A.J., and Schoyer, H.F.R., Proc. 25th Int. Annual Conf. of the ICT, 1994, p. 6911.

  146. US Palent 3708359, 1973.

  147. US Patent 4379903, 1983.

  148. Schoyer, H.F.R., Schnorhk, A.J., Korting, P.A.O.G., van Lit, P.J., Mul, J.M., Gadiot, G.M.H.J.L. and Meulenbrugge, J.J., J. Propul. Power, 1995, vol. 11, p. 856.

    Article  CAS  Google Scholar 

  149. Lessard, P., Druet, L., Vdleneuve, S., and Thiboutot, S., Proc. AGARD Conference, Loughton, 1992, p. 12-1.

  150. Ding, P., Wang, H., Wen, L., Cheng, G., Lu, C., and Yang, H., Ind. Eng. Chem. Res., 2014, vol. 53, no. 36, p. 13851.

    Article  CAS  Google Scholar 

  151. Göbel, M. and Klapötke, T.M., Z. Anorg. Allg. Chem., 2007, vol. 633, no. 7, p. 1006.

    Article  Google Scholar 

  152. Du, L., Jin, S., and Liu, Y., J. Mol. Model., 2019, vol. 25, p. 285.

    Article  PubMed  Google Scholar 

  153. Cerri, S., Bohn, M.A., Menke, K., and Galfetti, L., Propellants, Explos., Pyrotech., 2014, vol. 39 p, p. 192.

  154. Selim, K., Özkar, S., and Yilmaz, L.J., Appl. Polym. Sci., 2000, vol. 77 p, p. 538.

  155. Jadhav, P.M., Radhakrishnan, p., and Ghule, V.D., J. Mol. Model., 2105, vol. 21, no. 1, p. 34.

  156. Fei, T., Du, Y., and Pang, S., RSC Adv., 2018, vol. 13, p. 10215.

    Article  Google Scholar 

  157. Baxter, A. F., Martin, I., Christe, K. O., and Haiges, R., J. Am. Chem. Soc., 2018, vol. 140, no. 44, p. 15089.

    Article  CAS  PubMed  Google Scholar 

  158. Shvekhgeimer, M.G., Russ. Chem. Rev., 1998, vol. 67, no. 1, p. 35.

    Article  ADS  Google Scholar 

  159. US Patent 3375266, 1968.

  160. Gobel, M. and Klapotke, T.M., Acta Crystallogr., Sect. C, 2008, vol. 64, no. 2, p. 58.

    Article  Google Scholar 

  161. Song, J., Zhou, Z., Dong, X., Huang, H., Cao, D., Liang, L., and Wu, Y., J. Mater. Chem., 2012, vol. 22, no. 7, p. 3201.

    Article  CAS  Google Scholar 

  162. Zohari, N., Mohammadkhani, F.G., Montazeri, M., Roosta, S.T., Hosseini, S.G., and Zaree, M.A., Propellants, Explos., Pyrotech., 2020, vol. 46, no. 2, p. 329.

    Article  Google Scholar 

  163. Liu, J., Liquid Explosives, New York: Springer, 2015, pp. 5, 6, 8, 136, 309.

    Book  Google Scholar 

  164. US Patent 3389026, 1968.

  165. US Patent 5256220A, 1993.

  166. Larionova, O.A., Falyahov, I.F., Yusupova, L.M., and Sharnin, G.P., Khimiya energoemkikh soedinenii (Chemistry of Energy-Intensive Compounds), vol. 2: N-, O-nitro-soedineniya, furoksany, furazany, azidy, diazosoedineniya (N-, O-Nitro Compounds, Furoxanes, Furazanes), Moscow: Litres, 2017.

  167. Wei, vol., Zhu, W.H., Zhang, J.J., and Xiao, H.M.J., Hazard. Mater., 2010, vol. 179, p. 581.

  168. Dalinger, I.L., Shakhnes, A.K., Monogarov, K.A., Suponitsky, K.Y., and Sheremetev, A.B., Mendeleev Commun., 2015, vol. 25, p. 429.

    Article  CAS  Google Scholar 

  169. Yu, Q., Imler, G.H., Parrish, D.A., and Shreeve, J.M., Chem.—Eur. J., 2017, vol. 23, no. 70, p. 17682.

    Article  CAS  PubMed  Google Scholar 

  170. Zhao, G., Yin, P., Kumar, D., Imler, G.H., Parrish, D.A., and Shreeve, J.M., J. Am. Chem. Soc., 2019, vol. 141, no. 50, p. 19581.

    Article  CAS  PubMed  Google Scholar 

  171. Yingao, F. and Guohua, W., Hanneng Cuiliuo, 1997, vol. 5, no. 1, p. 9.

    Google Scholar 

  172. Fedoroff, B.T. and Sheffield, O.E., in Encyclopedia of Explosives and Related Items, Fedomff, B.T. and Sheffield, O.E., Eds., Hoboken, 1974.

    Google Scholar 

  173. Song, J., Zhou, Z., Dong, X., Huang, H., Cao, D., Liang, L., and Wu, Y., J. Mater. Chem., 2012, vol. 22, no. 7, p. 3201.

    Article  CAS  Google Scholar 

  174. US Patent 4745208, 1988.

  175. Kumari, D., Balakshe, R., and Banerjee, S., Ref. J. Chem., 2012, vol. 2, p. 240.

    Article  Google Scholar 

  176. Nazin, G.M.M., Manelis, G.B., and Dubovitsky, F.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1969, p. 1035.

  177. Oyumi, Y. and Brill, T.B., Propellants, Explos., Pyrotech., 1986, vol. 11, no. 2, p. 35.

    Article  CAS  Google Scholar 

  178. Muller, K.F., Renne, R.H., Gilligan, W.H., Adolph, H.G., and Kamlet, M.J., Combust. Flame, 1983, vol. 50, p. 341.

    Article  ADS  Google Scholar 

  179. Fokin, A.V., Studnev, YuN., and Kuznetsova, L.D., Izv. Ross. Akad. Nauk, 1996, vol. 45, p. 1952.

    Google Scholar 

  180. Chapman, R.D., Welker, M.F., and Kreutzberger, C.B., J. Org. Chem., 1998, vol. 63, no. 5, p. 1566.

    Article  CAS  Google Scholar 

  181. US Patent 3692837, 1972.

  182. Zinov’ev, V.M., Kucenko, G.V., Ermilov, A.S., and Boldavnin, I.I., Vysokoenergeticheskie napolniteli tverdyh raketnyh topliv i drugih vysokoenergeticheskih kondensirovannyh sistem. Fiziko-, termohimicheskie harakteristiki, poluchenie, primenenie. Spravochnik (High-Energy Fillers of Solid Rocket Fuels and Other High-Energy Condensed systems. Physical and Thermochemical Characteristics, Production, Application: Reference Handbook), Perm: Perm. Gos. Tekh. Univ, 2011, p. 253.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Vereshchagin.

Ethics declarations

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

EDITORIAL STATEMENT

The article underwent additional review by Reviews and Advances in Chemistry and was revised before its publication in Reviews and Advances in Chemistry, as compared to the version published in Russian.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vereshchagin, A.L. Prospective Components of Rocket Propellant. I. Oxidizers. rev. and adv. in chem. 13, 184–205 (2023). https://doi.org/10.1134/S2634827623600147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827623600147

Keywords:

Navigation