Skip to main content
Log in

Crystal growth, structural, optical, computational, and Z-scan analyses of imidazolium hydrogen oxalate crystal for nonlinear optical applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Imidazolium hydrogen oxalate (IHO) single crystals were grown by the slow evaporation method. The title crystal crystallized in a monoclinic crystal structure with a centrosymmetric space group of P21/n. The 1H NMR contains a peak at 4.90 ppm due to the presence of proton in oxalic acid. The O–H stretching vibration is noted at 3162 cm−1 in FT-IR and in FT-Raman at 3172 cm−1. The optical transparency and band gap were evaluated from the UV–Vis–NIR spectrum. The PL spectrum has a high violet emission band at 361 nm. TG/DTG study was used to find the thermal stability of the IHO crystal. Hirshfeld surface (HS) analysis revealed the molecular intermolecular interactions in the IHO molecule. The total polarizability (α) of the IHO molecule is 8.2652 × 10−24 esu. The third-order nonlinear susceptibility [χ(3)] of the IHO crystal is determined to be 2.6422 × 10−9 esu.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The corresponding author can provide access to the data which supports the findings of the research upon request.

Consent to publish

Not applicable.

References

  1. C. Zhang, Y. Song, X. Wang, Correlations between molecular structures and third-order non-linear optical functions of heterobimetallic clusters: a comparative study. Coord. Chem. Rev. 251, 111–141 (2007). https://doi.org/10.1016/j.ccr.2006.06.007

    Article  CAS  Google Scholar 

  2. M. Spasenović, M. Betz, L. Costa, H.M. van Driel, All-optical coherent control of electrical currents in centrosymmetric semiconductors. Phys. Rev. B 77, 085201 (2008). https://doi.org/10.1103/PhysRevB.77.085201

    Article  CAS  Google Scholar 

  3. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990). https://doi.org/10.1126/science.2321027

    Article  CAS  PubMed  Google Scholar 

  4. C.Q. Tang, Q. Zheng, H.H. Zhu, L.X. Wang, S.C. Chen, E. Ma, X.Y. Chen, Two-photon absorption and optical power limiting properties of ladder-type tetraphenylene cored chromophores with different terminal groups. J. Mater. Chem. C 1, 1771–1780 (2013). https://doi.org/10.1039/C2TC00780K

    Article  CAS  Google Scholar 

  5. C. Ji, T. Chen, Z. Sun, Y. Ge, W. Lin, J. Luo, Q. Shi, M. Hong, Bulk crystal growth and characterization of imidazolium l-tartrate (IMLT): a novel organic nonlinear optical material with a high laser-induced damage threshold. CrystEngComm 15, 2157–2162 (2013). https://doi.org/10.1039/C3CE26942F

    Article  CAS  Google Scholar 

  6. J. Pandey, Growth and electrical properties of new organic GOA crystal. IOSR J. Eng. 2(9), 49–53 (2012). https://doi.org/10.9790/3021-02954953

    Article  Google Scholar 

  7. P.C. Rajesh Kumar, K. Janardhana, V. Crasta, Crystal growth and third order NLO properties of a photonic material. J. Mol. Struct. 1059, 118–123 (2014). https://doi.org/10.1016/j.molstruc.2013.11.027

    Article  CAS  Google Scholar 

  8. M. Shakir, S.K. Kushwaha, K.K. Maurya, M. Arora, G. Bhagavannarayana, Growth and characterization of glycine picrate—remarkable second-harmonic generation in centrosymmetric crystal. J. Cryst. Growth 311, 3871–3875 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.007

    Article  CAS  Google Scholar 

  9. X. Ma, R. Liang, F. Yang, Z. Zhao, A. Zhang, N. Song, Q. Zhou, J. Zhang, Synthesis and properties of novel second-order NLO chromophores containing pyrrole as an auxiliary electron donor. J. Mater. Chem. 18, 1756–1764 (2008). https://doi.org/10.1039/B720023D

    Article  CAS  Google Scholar 

  10. X. Ma, F. Ma, Z. Zhao, N. Song, J. Zhang, Synthesis and properties of NLO chromophores with fine-tuned gradient electronic structures. J. Mater. Chem. 19, 2975–2985 (2009). https://doi.org/10.1039/B817789A

    Article  CAS  Google Scholar 

  11. S. Chinnasami, S. Chandran, R. Paulraj, P. Ramasamy, Structural, vibrational, Hirshfeld surfaces and optical studies of nonlinear optical organic imidazolium l-tartrate single crystal. J. Mol. Struct. 1179, 506–513 (2019). https://doi.org/10.1016/j.molstruc.2018.11.042

    Article  CAS  Google Scholar 

  12. K. Elangovan, A. Senthil, Growth, structural, spectral, thermal, mechanical, electrical, linear and third order nonlinear optical properties of imidazolium hydrogen maleate (IM) single crystal for nonlinear optical applications. Mater. Res. Express 6, 065101 (2019). https://doi.org/10.1088/2053-1591/ab0b52

    Article  CAS  Google Scholar 

  13. T.P. Srinivasan, S. Anandhi, R. Gopalakrishnan, Growth and characterization of 2-methylimidazolium d-tartrate single crystal. J. Cryst. Growth 318, 768–773 (2011). https://doi.org/10.1016/j.jcrysgro.2010.11.021

    Article  CAS  Google Scholar 

  14. T. Dhanabal, M. Sethurama, G. Amrithaganesan, S.K. Das, Spectral, thermal, structural, optical and antimicrobial activity studies on 2-methylimidazolinium picrate—an organic charge transfer complex. J. Mol. Struct. 1045, 112–123 (2013). https://doi.org/10.1016/j.molstruc.2013.03.043

    Article  CAS  Google Scholar 

  15. K. Elangovan, A. Senthil, G. Vinitha, Growth, structure perfection and characterization of 2-methylimidazolium hydrogen oxalate dihydrate (2MIO) single crystal for NLO applications. J. Mater. Sci. Mater. Electron. 30, 13664–13674 (2019). https://doi.org/10.1007/s10854-019-01742-x

    Article  CAS  Google Scholar 

  16. C. Ramki, R. Ezhil Vizhi, Growth, optical, electrical and mechanical properties of sodium hydrogen oxalate hydrate (NaHC2O4·H2O) single crystal for NLO applications. Mater. Chem. Phys. 197, 70–78 (2017). https://doi.org/10.1016/j.matchemphys.2017.04.066

    Article  CAS  Google Scholar 

  17. G.H. Nancollas, G.L. Gardner, Kinetics of crystal growth of calcium oxalate monohydrate. J. Cryst. Growth 21, 267–276 (1974). https://doi.org/10.1016/0022-0248(74)90014-1

    Article  CAS  Google Scholar 

  18. I.M. Khan, K. Alam, M.J. Alam, M. Ahmad, Spectrophotometric and photocatalytic studies of H-bonded charge transfer complex of oxalic acid with imidazole: single crystal XRD, experimental and DFT/TD-DFT studies. N. J. Chem. 43, 9039–9051 (2019). https://doi.org/10.1039/C9NJ00332K

    Article  CAS  Google Scholar 

  19. E.B. Anderson, T.E. Long, Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer 51, 2447–2454 (2010). https://doi.org/10.1016/j.polymer.2010.02.006

    Article  CAS  Google Scholar 

  20. G. Gilli, P. Gilli, Towards an unified hydrogen-bond theory. J. Mol. Struct. 552, 1–15 (2000). https://doi.org/10.1016/S0022-2860(00)00454-3

    Article  CAS  Google Scholar 

  21. J.C. MacDonald, P.C. Dorrestein, M.M. Pilley, Design of supramolecular layers via self-assembly of imidazole and carboxylic acids. Cryst. Growth Des. 1, 29–38 (2001). https://doi.org/10.1021/cg000008k

    Article  CAS  Google Scholar 

  22. R. Rajkumar, A. Kamaraj, S. Bharanidharan, H. Saleem, K. Krishnasamy, Synthesis, spectral characterization, single crystal X-ray diffraction and DFT studies of 4-((2, 4, 5-triphenyl-1H imidazole-1-yl)methyl)pyridine derivatives. J. Mol. Struct. 1084, 74–81 (2015). https://doi.org/10.1016/j.molstruc.2014.10.035

    Article  CAS  Google Scholar 

  23. D.L. Vein, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, San Diego, 1991)

    Google Scholar 

  24. G. Socrates, Infrared Characteristic Group of Frequencies (Wiley, New York, 1980)

    Google Scholar 

  25. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  26. C. Senthilkumar, P. Rajesh, P. Ramasamy, Crystal growth, spectral, optical, laser damage, photoconductivity and dielectric properties of semi-organic l-cystine hydrochloride single crystal. Spectrochim. Acta A 151, 432–437 (2015). https://doi.org/10.1016/j.saa.2015.06.113

    Article  CAS  Google Scholar 

  27. M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Luminescent metal–organic frameworks. Chem. Soc. Rev. 38, 1330–1352 (2009). https://doi.org/10.1039/B802352M

    Article  CAS  PubMed  Google Scholar 

  28. P.P. Vinaya, A.N. Prabhu, K. Subrahmanya Bhat, V. Upadhyaya, Synthesis, growth and characterization of a long-chain π-conjugation based methoxy chalcone derivative single crystal; a third-order nonlinear optical material for optical limiting applications. Opt. Mater. 89, 419–429 (2019). https://doi.org/10.1016/j.optmat.2019.01.061

    Article  CAS  Google Scholar 

  29. J. Dalal, N. Sinha, H. Yadav, B. Kumar, Structural, electrical, ferroelectric and mechanical properties with Hirshfeld surface analysis of novel NLO semi-organic sodium p-nitrophenolate dihydrate piezoelectric single crystal. RSC Adv. 5, 57735–57748 (2015). https://doi.org/10.1039/C5RA10501C

    Article  CAS  Google Scholar 

  30. G. Senthil Murugan, P. Ramasamy, Crystal growth, stability and photoluminescence studies of tetra aqua diglycine magnesium(II) hexa aqua magnesium(II) bis sulfate crystal. Physica B 406, 1169–1172 (2011). https://doi.org/10.1016/j.physb.2010.12.075

    Article  CAS  Google Scholar 

  31. P. Anandan, S. Vetrivel, R. Jayavel, C. Vedhi, G. Ravi, G. Bhagavan Narayana, Crystal growth, structural and photoluminescence studies of l-tyrosine hydrobromide semi-organic single crystal. J. Phys. Chem. Solids 73, 1296–1301 (2012). https://doi.org/10.1016/j.jpcs.2012.06.015

    Article  CAS  Google Scholar 

  32. C. Senthilkumar, P. Rajesh, P. Ramasamy, Crystal growth, structural, optical, thermal and dielectric properties of lithium hydrogen oxalate monohydrate single crystal. Opt. Mater. 73, 154–162 (2017). https://doi.org/10.1016/j.optmat.2017.07.051

    Article  CAS  Google Scholar 

  33. M.A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm 11, 19–32 (2009). https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  34. M.A. Palafox, D. Bhat, Y. Goyal, S. Ahmad, I.H. Joe, V.K. Rastogi, Spectrochim. Acta A 136, 464 (2015)

    Article  Google Scholar 

  35. P.K. Devi, K. Venkatachalam, Structural, optical, mechanical and density functional theory studies of 1H-pyrazol-2-ium hydrogen oxalate crystal. Mater. Chem. Phys. (2016). https://doi.org/10.1016/j.matchemphys.2016.08.020

    Article  Google Scholar 

  36. B.J. Powell, T. Baruah, N. Bernsein, K. Brake, R.K. McKenzie, P. Meredith, M.R. Pederson, J. Chem. Phys. 120, 8604 (2004)

    Article  Google Scholar 

  37. M. Shkir, S. AlFaify, H. Abbas, G. Bhagavannarayana, A physicochemical approach to study the experimental and theoretical properties of l-ornithine monohydrochloride: an organic nonlinear optical material. Mater. Chem. Phys. 155, 36–46 (2015). https://doi.org/10.1016/j.matchemphys.2015.01.062

    Article  CAS  Google Scholar 

  38. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  39. T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1, 104–113 (1934)

    Article  Google Scholar 

  40. S. Liu, Dynamic behaviour of chemical reactivity indices in density functional theory: a Bohn-Oppenheimer quantum molecular dynamics study. J. Chem. Sci. 117, 477–483 (2005)

    Article  CAS  Google Scholar 

  41. T. Hughbanks, R. Hoffmann, Chains of trans-edge-sharing molybdenum octahedra: metal–metal bonding in extended systems. J. Am. Chem. Soc. 105, 3528–3537 (1983). https://doi.org/10.1021/ja00349a027

    Article  CAS  Google Scholar 

  42. J.G. Małecki, Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium complexes with pyridine and its derivatives as ligands. Polyhedron 29, 1973–1979 (2010). https://doi.org/10.1016/j.poly.2010.03.015

    Article  CAS  Google Scholar 

  43. M. Chen, U.V. Waghmare, C.M. Friend, E. Kaxiras, A density functional study of clean and hydrogen-covered α-MoO3 (010): electronic structure and surface relaxation. J. Chem. Phys. 109, 6854–6860 (1998). https://doi.org/10.1063/1.477252

    Article  CAS  Google Scholar 

  44. P. Muthuraja, T. Shanmugavadivu, T. Joselin Beaula, V. Bena Jothy, M. Dhandapani, Influence of intramolecular hydrogen bonding interaction on the molecular properties of N-p-tolyl-5-oxo pyrrolidine-3-carboxylic acid: a theoretical and experimental study. Chem. Phys. Lett. 691, 114–121 (2018). https://doi.org/10.1016/j.cplett.2017.11.003

    Article  CAS  Google Scholar 

  45. E. Scrocco, J. Tomasi, Electronic molecular structure, reactivity, and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv. Quantum Chem. 11, 115–193 (1978). https://doi.org/10.1016/S0065-3276(08)60236-1

    Article  CAS  Google Scholar 

  46. F.J. Luque, J.M. Lopez, M. Orozco, Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects.” Theor. Chem. Acc. 103, 343–345 (2000)

    Article  CAS  Google Scholar 

  47. N. Okulik, A.H. Jubert, Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Int. Electron. J. Mol. Des. 4, 17–30 (2005)

    CAS  Google Scholar 

  48. R. Meenakshi, L. Jaganathan, S. Gunasekaran, S. Srinivasan, Density functional theory, restricted Hartree-Fock simulations and vibrational spectroscopic studies of nicorandil. Mol. Simul. 36(6), 425–433 (2010). https://doi.org/10.1080/08927020903583822

    Article  CAS  Google Scholar 

  49. M. Szafran, A. Komasa, E.B. Adamska, Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidine-carboxylic acid hydrochloride). J. Mol. Struct. 827, 101–107 (2007). https://doi.org/10.1016/j.molstruc.2006.05.012

    Article  CAS  Google Scholar 

  50. H.W. Thomson, P. Torkington, 171. The vibrational spectra of esters and ketones. J. Chem. Soc. (1945). https://doi.org/10.1039/JR9450000640

    Article  Google Scholar 

  51. S. Vadivel, A.B. Sultan, S.A. Samad, A. Shunmuganarayanan, R. Muthu, Synthesis, structural elucidation, thermal, mechanical, linear and nonlinear optical properties of hydrogen-bonded organic single crystal guanidinium propionate for optoelectronic device application. Chem. Phys. Lett. 707, 165–171 (2018). https://doi.org/10.1016/j.cplett.2018.07.055

    Article  CAS  Google Scholar 

  52. S. Ravi, R. Sreedharan, K.R. Raghi, T.K. Manoj Kumar, K. Naseema, Linear–nonlinear optical and quantum chemical studies on quinolinium 3, 5-dinitrobenzoate: a novel third order nonlinear optical material for optoelectronic applications. Spectrochim. Acta A 249, 119304 (2021). https://doi.org/10.1016/j.saa.2020.119304

    Article  CAS  Google Scholar 

  53. B. Sahaya Infant Lasalle, A. Manikandan, M. SenthilPandian, P. Ramasamy, Theoretical and experimental investigation on 1, 2, 3-benzotriazole 4-hydroxybenzoic acid (BTHBA) single crystals for third-order nonlinear optical (NLO) applications. Cryst. Res. Technol. 2200155, 1–15 (2022). https://doi.org/10.1002/crat.202200155

    Article  CAS  Google Scholar 

  54. A. Priyadharshini, S. Kalainathan, Structural, optical, electrical properties of new hybrid organic–inorganic NLO single crystal: bis(1H-benzotriazole) hexaaqua-zinc bis(sulfate) tetrahydrate (BZS). J. Mater. Sci. Mater. Electron. 28, 5089–5101 (2017). https://doi.org/10.1007/s10854-016-6222-6

    Article  CAS  Google Scholar 

  55. M.K. Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, R.M. Kumar, Studies of the structural and third-order nonlinear optical properties of solution grown 4-hydroxy-3-methoxy-4′-N′-methylstilbazolium tosylate monohydrate crystals. Opt. Mater. 36, 988–995 (2014). https://doi.org/10.1016/j.optmat.2014.01.007

    Article  CAS  Google Scholar 

  56. F.Q. Li, N. Zong, F.F. Zhang, J. Yang, F. Yang, Q.J. Peng, D.F. Cui, J.Y. Zhang, X.Y. Wang, C.T. Chen, Z.Y. Xu, Investigation of third-order optical nonlinearity in KBe2BO3F2 by Z-Scan. Appl. Phys. B 108, 301–305 (2012). https://doi.org/10.1007/s00340-012-4985-x

    Article  CAS  Google Scholar 

  57. D. Wang, T. Li, S. Wang, J. Wang, Z. Wang, X. Xu, F. Zhang, Study on nonlinear refractive properties of KDP and DKDP crystals. RSC Adv. 6, 14490–14495 (2016). https://doi.org/10.1039/C5RA24761F

    Article  CAS  Google Scholar 

  58. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, CRYSTAL EXPLORER, Version 3.1 (University of Western Australia, Perth, 2012)

    Google Scholar 

  59. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford, 2009)

    Google Scholar 

  60. A. Frisch, A.B. Nielson, A.J. Holder, GAUSS VIEW User’s Manual (Gaussian, Inc., Pittsburgh, 2000)

    Google Scholar 

  61. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, cclib: a library for package-independent computational chemistry algorithms. J. Compos. Chem. 29, 839–845 (2008). https://doi.org/10.1002/jcc.20823

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

EC helped in the formal analysis, methodology, investigation, conceptualization, and writing of the original draft; MS helped in the conceptualization, formal analysis, review and editing of the original draft, and supervision; SC helped in the formal analysis, methodology, validation, and writing, reviewing, and editing of the original draft; KT helped in the formal analysis, investigation, and conceptualization; SM helped in the formal analysis, methodology, and supervision.

Corresponding author

Correspondence to Mugundan Sankar.

Ethics declarations

Conflict of interest

The authors have no material financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3512 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnakannu, E., Sankar, M., Chandran, S. et al. Crystal growth, structural, optical, computational, and Z-scan analyses of imidazolium hydrogen oxalate crystal for nonlinear optical applications. Journal of Materials Research 39, 1246–1257 (2024). https://doi.org/10.1557/s43578-024-01306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-024-01306-8

Navigation