Skip to main content

Advertisement

Log in

The diagnostic efficiency of integration of 2HG MRS and IVIM versus individual parameters for predicting IDH mutation status in gliomas in clinical scenarios: A retrospective study

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Currently, there remains a scarcity of established preoperative tests to accurately predict the isocitrate dehydrogenase (IDH) mutation status in clinical scenarios, with limited research has explored the potential synergistic diagnostic performance among metabolite, perfusion, and diffusion parameters. To address this issue, we aimed to develop an imaging protocol that integrated 2-hydroxyglutarate (2HG) magnetic resonance spectroscopy (MRS) and intravoxel incoherent motion (IVIM) by comprehensively assessing metabolic, cellular, and angiogenic changes caused by IDH mutations, and explored the diagnostic efficiency of this imaging protocol for predicting IDH mutation status in clinical scenarios.

Methods

Patients who met the inclusion criteria were categorized into two groups: IDH-wild type (IDH-WT) group and IDH-mutant (IDH-MT) group. Subsequently, we quantified the 2HG concentration, the relative apparent diffusion coefficient (rADC), the relative true diffusion coefficient value (rD), the relative pseudo-diffusion coefficient (rD*) and the relative perfusion fraction value (rf). Intergroup differences were estimated using t-test and Mann–Whitney U test. Finally, we performed receiver operating characteristic (ROC) curve and DeLong’s test to evaluate and compare the diagnostic performance of individual parameters and their combinations.

Results

64 patients (female, 21; male, 43; age, 47.0 ± 13.7 years) were enrolled. Compared with IDH-WT gliomas, IDH-MT gliomas had higher 2HG concentration, rADC and rD (P < 0.001), and lower rD* (P = 0.013). The ROC curve demonstrated that 2HG + rD + rD* exhibited the highest areas under curve (AUC) value (0.967, 95%CI 0.889–0.996) for discriminating IDH mutation status. Compared with each individual parameter, the predictive efficiency of 2HG + rADC + rD* and 2HG + rD + rD* shows a statistically significant enhancement (DeLong’s test: P < 0.05).

Conclusions

The integration of 2HG MRS and IVIM significantly improves the diagnostic efficiency for predicting IDH mutation status in clinical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Miller JJ, Gonzalez Castro LN, McBrayer S et al (2022) Isocitrate dehydrogenase (IDH) mutant gliomas: a Society for Neuro-Oncology (SNO) consensus review on diagnosis, management, and future directions. Neuro Oncol 25:4. https://doi.org/10.1093/neuonc/noac207

    Article  CAS  PubMed Central  Google Scholar 

  2. Cahill DP (2021) Extent of resection of glioblastoma: a critical evaluation in the molecular era. Neurosurg Clin N Am 32:23–29. https://doi.org/10.1016/j.nec.2020.09.006

    Article  PubMed  Google Scholar 

  3. Suh CH, Kim HS, Jung SC et al (2018) 2-hydroxyglutarate MR spectroscopy for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data. Neuro Oncol 20:1573–1583. https://doi.org/10.1093/neuonc/noy113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jain R, Johnson DR, Patel SH et al (2020) “Real world” use of a highly reliable imaging sign: “T2-FLAIR mismatch” for identification of IDH mutant astrocytomas. Neuro Oncol 22:936–943. https://doi.org/10.1093/neuonc/noaa041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cindil E, Sendur HN, Cerit MN et al (2022) Prediction of IDH mutation status in high-grade gliomas using DWI and high T1-weight DSC-MRI. Acad Radiol 29(Suppl 3):S52–S62. https://doi.org/10.1016/j.acra.2021.02.002

    Article  PubMed  Google Scholar 

  6. Nuessle NC, Behling F, Tabatabai G et al (2021) ADC-based stratification of molecular glioma subtypes using high b-value diffusion-weighted imaging. J Clin Med 10:3541. https://doi.org/10.3390/jcm10163451

    Article  Google Scholar 

  7. Li S, Zheng Y, Sun W et al (2021) Glioma grading, molecular feature classification, and microstructural characterization using MR diffusional variance decomposition (DIVIDE) imaging. Eur Radiol 31:8197–8207. https://doi.org/10.1007/s00330-021-07959-x

    Article  PubMed  Google Scholar 

  8. van Santwijk L, Kouwenberg V, Meijer F et al (2022) A systematic review and meta-analysis on the differentiation of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging. Insights Imaging 13:102. https://doi.org/10.1186/s13244-022-01230-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alvarez-Torres MDM, Fuster-Garcia E, Juan-Albarracin J et al (2022) Local detection of microvessels in IDH-wildtype glioblastoma using relative cerebral blood volume: an imaging marker useful for astrocytoma grade 4 classification. BMC Cancer 22:40. https://doi.org/10.1186/s12885-021-09117-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Federau C, Meuli R, O’Brien K et al (2014) Perfusion measurement in brain gliomas with intravoxel incoherent motion MRI. AJNR Am J Neuroradiol 35:256–62. https://doi.org/10.3174/ajnr.A3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Togao O, Hiwatashi A, Yamashita K et al (2016) Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging. Neuro Oncol 18:132–41. https://doi.org/10.1093/neuonc/nov147

    Article  PubMed  Google Scholar 

  12. Lu J, Li X, Li H (2021) Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas. Magn Reson Imaging 83:189–195. https://doi.org/10.1016/j.mri.2021.09.005

    Article  CAS  PubMed  Google Scholar 

  13. Bhandari A, Sharma C, Ibrahim M et al (2021) The role of 2-hydroxyglutarate magnetic resonance spectroscopy for the determination of isocitrate dehydrogenase status in lower grade gliomas versus glioblastoma: a systematic review and meta-analysis of diagnostic test accuracy. Neuroradiology 63:1823–1830. https://doi.org/10.1007/s00234-021-02702-1

    Article  PubMed  Google Scholar 

  14. Cuccarini V, Antelmi L, Pollo B et al (2019) In vivo 2-hydroxyglutarate-proton magnetic resonance spectroscopy (3 T, PRESS technique) in treatment-naive suspect lower-grade gliomas: feasibility and accuracy in a clinical setting. Neurol Sci 41:347. https://doi.org/10.1007/s10072-019-04087-9

    Article  PubMed  Google Scholar 

  15. Andronesi OC, Rapalino O, Gerstner E et al (2013) Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. J Clin Invest 123:3659–63. https://doi.org/10.1172/JCI67229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de la Fuente MI, Young RJ, Rubel J et al (2016) Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro Oncol 18:283–90. https://doi.org/10.1093/neuonc/nov307

    Article  CAS  PubMed  Google Scholar 

  17. Suh CH, Kim HS, Paik W et al (2019) False-positive measurement at 2-hydroxyglutarate MR spectroscopy in isocitrate dehydrogenase wild-type glioblastoma: a multifactorial analysis. Radiology 291:752–762. https://doi.org/10.1148/radiol.2019182200

    Article  PubMed  Google Scholar 

  18. Gatenby R, Grove O, Gillies R (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269:8–15. https://doi.org/10.1148/radiol.13122697

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tatekawa H, Hagiwara A, Uetani H et al (2020) Multiparametric MR-PET measurements in hypermetabolic regions reflect differences in molecular status and tumor grade in treatment-naive diffuse gliomas. J Neurooncol 149:337–346. https://doi.org/10.1007/s11060-020-03613-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bumes E, Wirtz FP, Fellner C et al (2020) Non-invasive prediction of IDH mutation in patients with glioma WHO II/III/IV based on F-18-FET PET-guided in vivo (1)H-magnetic resonance spectroscopy and machine learning. Cancers (Basel) 12:3406. https://doi.org/10.3390/cancers12113406

    Article  PubMed  Google Scholar 

  21. Jezek P (2020) 2-hydroxyglutarate in cancer cells. Antioxid Redox Signal 33:903–926. https://doi.org/10.1089/ars.2019.7902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kayabolen A, Yilmaz E, Bagci-Onder T (2021) IDH mutations in glioma: double-edged sword in clinical applications? Biomedicines 9:799. https://doi.org/10.3390/biomedicines9070799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suh CH, Kim HS, Jung SC et al (2018) Imaging prediction of isocitrate dehydrogenase (IDH) mutation in patients with glioma: a systemic review and meta-analysis. European Radiology 29:745–758. https://doi.org/10.1007/s00330-018-5608-7

    Article  PubMed  Google Scholar 

  24. Choi C, Ganji S, Hulsey K et al (2013) A comparative study of short- and long-TE (1)H MRS at 3 T for in vivo detection of 2-hydroxyglutarate in brain tumors. NMR Biomed 26:1242–50. https://doi.org/10.1002/nbm.2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suh CH, Kim HS, Park JE et al (2020) Comparative value of 2-hydroxyglutarate-to-lipid and lactate ratio versus 2-hydroxyglutarate concentration on MR spectroscopic images for predicting isocitrate dehydrogenase mutation status in gliomas. Radiol Imaging Cancer 2:e190083. https://doi.org/10.1148/rycan.2020190083

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pope WB, Prins RM, Albert Thomas M et al (2012) Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 107:197–205. https://doi.org/10.1007/s11060-011-0737-8

    Article  CAS  PubMed  Google Scholar 

  27. Bindra RS, Glazer PM (2005) Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res 569:75–85. https://doi.org/10.1016/j.mrfmmm.2004.03.013

    Article  CAS  PubMed  Google Scholar 

  28. Lee S, Choi SH, Ryoo I et al (2015) Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging. Journal of Neuro-Oncology 121:141–150. https://doi.org/10.1007/s11060-014-1614-z

    Article  CAS  PubMed  Google Scholar 

  29. Choi C, Raisanen JM, Ganji SK et al (2016) Prospective longitudinal analysis of 2-hydroxyglutarate magnetic resonance spectroscopy identifies broad clinical utility for the Management of Patients with IDH-mutant glioma. J Clin Oncol 34:4030–4039. https://doi.org/10.1200/jco.2016.67.1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagashima H, Tanaka K, Sasayama T et al (2016) Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma. Neuro Oncol 18:1559–1568. https://doi.org/10.1093/neuonc/now090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tietze A, Choi C, Mickey B et al (2018) Noninvasive assessment of isocitrate dehydrogenase mutation status in cerebral gliomas by magnetic resonance spectroscopy in a clinical setting. J Neurosurg 128:391–398. https://doi.org/10.3171/2016.10.JNS161793

    Article  CAS  PubMed  Google Scholar 

  32. Bertolino N, Marchionni C, Ghielmetti F et al (2014) Accuracy of 2-hydroxyglutarate quantification by short-echo proton-MRS at 3 T: a phantom study. Phys Med 30:702–7. https://doi.org/10.1016/j.ejmp.2014.03.002

    Article  PubMed  Google Scholar 

  33. Askari P, Dimitrov IE, Ganji SK et al (2021) Spectral fitting strategy to overcome the overlap between 2-hydroxyglutarate and lipid resonances at 2.25 ppm. Magn Reson Med 86:1818–1828. https://doi.org/10.1002/mrm.28829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li X, Strasser B, Jafari-Khouzani K et al (2020) Super-resolution whole-brain 3D MR spectroscopic imaging for mapping D-2-hydroxyglutarate and tumor metabolism in isocitrate dehydrogenase 1-mutated human gliomas. Radiology 294:589–597. https://doi.org/10.1148/radiol.2020191529

    Article  PubMed  Google Scholar 

  35. Tiwari V, Mashimo T, An Z et al (2020) In vivo MRS measurement of 2-hydroxyglutarate in patient-derived IDH-mutant xenograft mouse models versus glioma patients. Magn Reson Med 84:1152–1160. https://doi.org/10.1002/mrm.28183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Peng H, Wang YL et al (2021) Predictive role of the apparent diffusion coefficient and MRI morphologic features on IDH status in patients with diffuse glioma: a retrospective cross-sectional study. Front Oncol 11:640738. https://doi.org/10.3389/fonc.2021.640738

    Article  PubMed  PubMed Central  Google Scholar 

  37. Du N, Zhou X, Mao R et al (2022) Preoperative and noninvasive prediction of gliomas histopathological grades and IDH molecular types using multiple MRI characteristics. Frontiers in Oncology 12:873839. https://doi.org/10.3389/fonc.2022.873839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu D, Gao S-X, Liao H-F et al (2020) A comparative study of 2 different segmentation methods of ADC histogram for differentiation genetic subtypes in lower-grade diffuse gliomas. BioMed Res Int 2020:1–13. https://doi.org/10.1155/2020/9549361

    Article  CAS  Google Scholar 

  39. Koivunen P, Lee S, Duncan CG et al (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–8. https://doi.org/10.1038/nature10898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Bihan D (2019) What can we see with IVIM MRI? Neuroimage 187:56–67. https://doi.org/10.1016/j.neuroimage.2017.12.062

    Article  PubMed  Google Scholar 

  41. van der Voort SR, Incekara F, Wijnenga MMJ et al (2022) Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning. Neuro Oncol. https://doi.org/10.1093/neuonc/noac166

    Article  PubMed Central  Google Scholar 

  42. Szczepankiewicz F, van Westen D, Englund E et al (2016) The link between diffusion MRI and tumor heterogeneity: mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). Neuroimage 142:522–532. https://doi.org/10.1016/j.neuroimage.2016.07.038

    Article  PubMed  Google Scholar 

  43. Watkins S, Robel S, Kimbrough IF et al (2014) Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nat Commun 5:4196. https://doi.org/10.1038/ncomms5196

    Article  CAS  PubMed  Google Scholar 

  44. Moteki T, Horikoshi H (2011) Evaluation of noncirrhotic hepatic parenchyma with and without significant portal vein stenosis using diffusion-weighted echo-planar MR on the basis of multiple-perfusion-components theory. Magn Reson Imaging 29:64–73. https://doi.org/10.1016/j.mri.2010.07.008

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (21927808, 81702451, 81930048).

Author information

Authors and Affiliations

Authors

Contributions

Huicong Shen contributed to the study conception and design.

All authors contributed to material preparation, data collection.

Meimei Yu and Ying Ge contributed to data analysis and interpretation.

The first draft of the manuscript was written by Meimei Yu and Ying Ge, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huicong Shen.

Ethics declarations

Ethics approval

This is an observational study. The Beijing Tiantan Hospital Research Ethics Committee has confirmed that no ethical approval is required.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 1.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Ge, Y., Wang, Z. et al. The diagnostic efficiency of integration of 2HG MRS and IVIM versus individual parameters for predicting IDH mutation status in gliomas in clinical scenarios: A retrospective study. J Neurooncol 167, 305–313 (2024). https://doi.org/10.1007/s11060-024-04609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-024-04609-2

Keywords

Navigation