Skip to main content
Log in

Low-latitude hydroclimate changes related to paleomagnetic variations during the Holocene in coastal southern China

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

The variations in precipitation have displayed a complex pattern in different regions since the mid-to-late-Holocene. Cloud formation processes may have a significant impact on precipitation, especially during the tropical marine processes and summer monsoon which convey abundant water vapor to coastal southern China and inland areas. Here, we use two 7500 year sedimentary records from the Pearl River Delta and the closed Maar Lake, respectively, in coastal southern China to reconstruct the mid-to-late-Holocene humidity variability and explore its possible relationship with cloud cover modulated by the Earth’s magnetic fields (EMF). Our proxy records document an apparent increase in wetness in coastal southern China between 3.0 and 1.8 kyr BP. This apparent increase in humidity appears to be consistent with the lower virtual axial dipole moments and, in turn, with a lower EMF. This correlation suggests that the EMF might have been superimposed on the weakened monsoon to regulate the mid-to-late-Holocene hydroclimate in coastal southern China through the medium of galactic cosmic rays, aerosols, and cloud cover. However, further investigations are needed to verify this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrajevitch A, Kodama K (2011). Diagenetic sensitivity of paleoenvironmental proxies: a rock magnetic study of Australian continental margin sediments. Geochem Geophys Geosyst, 12(5): Q05Z24

    Article  Google Scholar 

  • Blaauw M, Christen J (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal, 6(3): 457–474

    Article  MathSciNet  Google Scholar 

  • Cai Y, Tan L, Cheng H, An Z, Edwards R L, Kelly M J, Kong X, Wang X (2010). The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett, 291(1–4): 21–31

    Article  ADS  CAS  Google Scholar 

  • Campuzano S A, De Santis A, Pavón-Carrasco F J, Osete M L, Qamili E (2018). New perspectives in the study of the Earth’s magnetic field and climate connection: the use of transfer entropy. PLoS One, 13(11): e0207270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carslaw K S, Harrison R G, Kirkby J (2002). Cosmic rays, clouds, and climate. Science, 298(5599): 1732–1737

    Article  ADS  CAS  PubMed  Google Scholar 

  • Channell J ET, Vigliotti L (2019). The role of geomagnetic field intensity in Late Quaternary evolution of humans and large mammals. Rev Geophys, 57(3): 709–738

    Article  ADS  Google Scholar 

  • Constable C, Korte M, Panovska S (2016). Persistent high paleosecular variation activity in southern hemisphere for at least 10000 years. Earth Planet Sci Lett, 453: 78–86

    Article  ADS  CAS  Google Scholar 

  • Conroy J L, Overpeck J T, Cole J E, Shanahan T M, Steinitz-Kannan M (2008). Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat Sci Rev, 27(11–12): 1166–1180

    Article  ADS  Google Scholar 

  • Cooper A, Turney C S M, Palmer J, Hogg A, McGlone M, Wilmshurst J, Lorrey A M, Heaton T J, Russell J M, McCracken K, Anet J G, Rozanov E, Friedel M, Suter I, Peter T, Muscheler R, Adolphi F, Dosseto A, Faith J T, Fenwick P, Fogwill C J, Hughen K, Lipson M, Liu J, Nowaczyk N, Rainsley E, Bronk Ramsey C, Sebastianelli P, Souilmi Y, Stevenson J, Thomas Z, Tobler R, Zech R (2021). A global environmental crisis 42000 years ago. Science, 371(6531): 811–818

    Article  PubMed  Google Scholar 

  • Courtillot V, Gallet Y, Le Mouël J L, Fluteau F, Genevey A (2007). Are there connections between the Earth’s magnetic field and climate? Earth Planet Sci Lett, 253(3–4): 328–339

    Article  ADS  CAS  Google Scholar 

  • Dergachev V A, Dmitriev P B, Raspopov O M, Jungner H (2007). Cosmic ray flux variations, modulated by the solar and terrestrial magnetic fields, and climate changes. Part 2: the time interval from ~10000 to ~100000 years ago. Geomagn Aeron, 47(1): 109–117

    Article  ADS  Google Scholar 

  • Duan Z, Liu Q, Yang X, Gao X, Su Y (2014). Magnetism of the Huguangyan Maar Lake sediments, Southeast China and its paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol, 395: 158–167

    Article  Google Scholar 

  • Gallet Y, Genevey A, Fluteau F (2005). Does Earth’s magnetic field secular variation control centennial climate change? Earth Planet Sci Lett, 236(1–2): 339–347

    Article  ADS  CAS  Google Scholar 

  • Hao Z, Zheng J, Zhang X, Liu H, Li M, Ge Q (2016). Spatial patterns of precipitation anomalies in eastern China during centennial cold and warm periods of the past 2000 years. Int J Climatol, 36(1): 467–475

    Article  Google Scholar 

  • Harris I, Osborn T J, Jones P, Lister D (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data, 7(1): 109

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison R J, Feinberg J M (2008). FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem Geophys Geosyst, 9(5): Q05016

    Article  ADS  Google Scholar 

  • Haug G H, Hughen K A, Sigman D M, Peterson L C, Röhl U (2001). Southward migration of the intertropical convergence zone through the Holocene. Science, 293(5533): 1304–1308

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hu C, Henderson G M, Huang J, Xie S, Sun Y, Johnson K R (2008). Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet Sci Lett, 266(3–4): 221–232

    Article  ADS  CAS  Google Scholar 

  • Hyland E G, Sheldon N D, Van der Voo R, Badgley C, Abrajevitch A (2015). A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions. Geol Soc Am Bull, 127(7–8): 975–981

    Google Scholar 

  • Jalihal C, Srinivasan J, Chakraborty A (2019). Modulation of Indian monsoon by water vapor and cloud feedback over the past 22,000 years. Nat Commun, 10(1): 5701

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji J F, Chen J, Balsam W, Lu H Y, Sun Y B, Xu H F (2004). High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: rapid climatic response of the East Asian Monsoon to the tropical Pacific. Geophys Res Lett, 31(3): L03207

    Article  ADS  Google Scholar 

  • Jiang Y, Yang X Q, Liu X, Qian Y, Zhang K, Wang M, Li F, Wang Y, Lu Z (2020). Impacts of wildfire aerosols on global energy budget and climate: the role of climate feedbacks. J Clim, 33(8): 3351–3366

    Article  ADS  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D (1996). The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc, 77(3): 437–472

    Article  ADS  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, Fiorino M, Potter G L (2002). NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc, 83(11): 1631–1644

    Article  ADS  Google Scholar 

  • Kathayat G, Cheng H, Sinha A, Spötl C, Edwards R L, Zhang H, Li X, Yi L, Ning Y, Cai Y, Lui W L, Breitenbach S F (2016). Indian monsoon variability on millennial-orbital timescales. Sci Rep, 6(1): 24374

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerton A K (2009). Climate change and the Earth’s magnetic poles, a possible connection. Energy Environ, 20(1): 75–83

    Article  Google Scholar 

  • Kirkby J (2007). Cosmic rays and climate. Surv Geophys, 28(5–6): 333–375

    Article  ADS  Google Scholar 

  • Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C, Heinritzi M, Simon M, Yan C, Almeida J, Tröstl J, Nieminen T, Ortega I K, Wagner R, Adamov A, Amorim A, Bernhammer A K, Bianchi F, Breitenlechner M, Brilke S, Chen X, Craven J, Dias A, Ehrhart S, Flagan R C, Franchin A, Fuchs C, Guida R, Hakala J, Hoyle C R, Jokinen T, Junninen H, Kangasluoma J, Kim J, Krapf M, Kürten A, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Molteni U, Onnela A, Peräkylä O, Piel F, Petäjä T, Praplan A P, Pringle K, Rap A, Richards N A, Riipinen I, Rissanen M P, Rondo L, Sarnela N, Schobesberger S, Scott C E, Seinfeld J H, Sipilä M, Steiner G, Stozhkov Y, Stratmann F, Tomé A, Virtanen A, Vogel A L, Wagner A C, Wagner P E, Weingartner E, Wimmer D, Winkler P M, Ye P, Zhang X, Hansel A, Dommen J, Donahue N M, Worsnop D R, Baltensperger U, Kulmala M, Carslaw K S, Curtius J (2016). Ion-induced nucleation of pure biogenic particles. Nature, 533(7604): 521–526

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen M F, Riisager P (2009). Is there a link between Earth’s magnetic field and low-latitude precipitation? Geology, 37(1): 71–74

    Article  ADS  Google Scholar 

  • Korte M, Donadini F, Constable C G (2009). Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochem Geophys Geosyst, 10(6): Q06008

    Article  ADS  Google Scholar 

  • Laskar J, Fienga A, Gastineau M, Manche H (2011). La2010: a new orbital solution for the long-term motion of the Earth. Astron Astrophys, 532: A89

    Article  ADS  Google Scholar 

  • Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011). Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci, 4(12): 888–894

    Article  ADS  CAS  Google Scholar 

  • Liu Q, Gu Z, Liu J, You H, Lü H, Chu G, Qi X, Negendank J, Mingram J, Schettler G (2005). Bulk organic carbon isotopic record of Huguangyan maar lake, southeastern China and its paleoclimatic and paleoenvironmental significance since 62 ka BP. Marine Geol & Quater Geol, 25(2): 115–126

    Google Scholar 

  • Liu Y, Fang C, Li Q, Song H, Ta W, Zhao G, Sun C (2019). Tree-ring δ18O based PDSI reconstruction in the Mt. Tianmu region since 1618 AD and its connection to the East Asian summer monsoon. Ecol Indic, 104: 636–647

    Article  CAS  Google Scholar 

  • Long X, Ji J, Balsam W (2011). Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China: spectral and magnetic measurements. J Geophys Res, 116(F3): F03015

    ADS  Google Scholar 

  • Luo R, Liu Y, Zhu Q, Tang Y, Shao T (2021). Effects of aerosols on cloud and precipitation in East-Asian drylands. Int J Climatol, 41(9): 4603–4618

    Article  Google Scholar 

  • Nilsson A, Holme R, Korte M, Suttie N, Hill M (2014). Reconstructing Holocene geomagnetic field variation: new methods, models and implications. Geophys J Int, 198(1): 229–248

    Article  ADS  Google Scholar 

  • Pierce J R (2017). Cosmic rays, aerosols, clouds, and climate: recent findings from the CLOUD experiment. J Geophys Res Atmos, 122(15): 8051–8055

    Article  ADS  CAS  Google Scholar 

  • Pierce J R, Adams P J (2007). Efficiency of cloud condensation nuclei formation from ultrafine particles. Atmos Chem Phys, 7(5): 1367–1379

    Article  ADS  CAS  Google Scholar 

  • Robinson S G, Sahota J T S, Oldfield F (2000). Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices. Mar Geol, 163(1–4): 77–107

    Article  ADS  CAS  Google Scholar 

  • Robock A, Outten S (2018). Volcanoes: Role in Climate. In: Reference Module in Earth Systems and Environmental Sciences

  • Sato Y, Goto D, Michibata T, Suzuki K, Takemura T, Tomita H, Nakajima T (2018). Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model. Nat Commun, 9(1): 985

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Scheinost A C (1998). Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify fe oxide minerals in soils. Clays Clay Miner, 46(5): 528–536

    Article  ADS  CAS  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M (2018). GPCC full data monthly product version 2018 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historical data.

  • Schwertmann U (1988). Occurrence and formation of iron oxides in various pedoenvironments. In: Iron in Soils and Clay Minerals (pp. 267–308). New York Springer

    Chapter  Google Scholar 

  • Southon J, Kashgarian M, Fontugne M, Metivier B, Yim W W-S (2002). Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon, 44(1): 167–180

    Article  Google Scholar 

  • Stenchikov G (2021). The role of volcanic activity in climate and global changes. In: Letcher T M, ed. Climate Change (3rd Ed). Elsevier, 607–643

  • Stuiver M, Reimer P J, Reimer R W (2020). CALIB 7.1 [WWW program] Avaible at CALIB website.

  • Svensmark H, Enghoff M B, Shaviv N J, Svensmark J (2017). Increased ionization supports growth of aerosols into cloud condensation nuclei. Nat Commun, 8(1): 2199

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensmark J, Enghoff M B, Shaviv N J, Svensmark H (2016). The response of clouds and aerosols to cosmic ray decreases. J Geophys Res Space Phys, 121(9): 8152–8181

    Article  ADS  CAS  Google Scholar 

  • Tan L C, Cai Y J, Cheng H, Edwards L R, Gao Y L, Xu H, Zhang H, An Z (2018). Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth Planet Sci Let, 482: 580–590

    Article  ADS  CAS  Google Scholar 

  • Torrent J, Barrón V (2008). Diffuse Reflectance Spectroscopy. In: Ulery A L, Richard Drees L, eds. Methods of Soil Analysis Part 5—Mineralogical Methods. Soil Sci Soc America, 367–385

  • Wang Q, Yang X, Anderson N J, Dong X (2016). Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China). Quat Res, 86(1): 1–12

    Article  ADS  CAS  Google Scholar 

  • Wang Y, Cheng H, Edwards R L, He Y, Kong X, An Z, Wu J, Kelly M J, Dykoski C A, Li X (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science, 308(5723): 854–857

    Article  ADS  CAS  PubMed  Google Scholar 

  • Williamson C J, Kupc A, Axisa D, Bilsback K R, Bui T, Campuzano-Jost P, Dollner M, Froyd K D, Hodshire A L, Jimenez J L, Kodros J K, Luo G, Murphy D M, Nault B A, Ray E A, Weinzierl B, Wilson J C, Yu F, Yu P, Pierce J R, Brock C A (2019). A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 574(7778): 399–403

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wu X, Zhang Z, Xu X, Shen J (2012). Asian summer monsoonal variations during the Holocene revealed by Huguangyan maar lake sediment record. Palaeogeogr Palaeoclimatol Palaeoecol, 323–325(15): 13–21

    Article  Google Scholar 

  • Xie S, Evershed R P, Huang X, Zhu Z, Pancost R D, Meyers P A, Gong L, Hu C, Huang J, Zhang S, Gu Y, Zhu J (2013). Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China. Geology, 41(8): 827–830

    Article  ADS  Google Scholar 

  • Xu H, Goldsmith Y, Lan J, Tan L, Wang X, Zhou X, Cheng J, Lang Y, Liu C (2020). Juxtaposition of western Pacific subtropical high on Asian Summer Monsoon shapes subtropical East Asian precipitation. Geophys Res Let, 47(3): e2019GL084705

    Article  ADS  Google Scholar 

  • Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C (2011). A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies. Nat Geosci, 4(9): 611–614

    Article  ADS  CAS  Google Scholar 

  • Yang X, Su Z, Yang J, Huang W (2012). Magnetic fabrics of maar lake sediments in tropical southern China record hydrodynamic process. Quater Sci, 32(4): 795–802

    Google Scholar 

  • Yang X, Wei G, Yang J, Jia G, Huang C, Xie L, Huang W, Argyrios K (2014). Paleoenvironmental shifts and precipitation variations recorded in tropical maar lake sediments during the Holocene in Southern China. The Holocene, 24(10): 1216–1225

    Article  ADS  Google Scholar 

  • Zhang E L, Zhao C, Xue B, Liu Z H, Yu Z C, Chen R, Shen J (2017). Millennial-scale hydroclimate variations in southwest China linked to tropical Indian Ocean since the Last Glacial Maximum. Geology, 45(5): 435–438

    Article  ADS  Google Scholar 

  • Zhang H, Cheng H, Sinha A, Spötl C, Cai Y, Liu B, Kathayat G, Li H, Tian Y, Li Y, Zhao J, Sha L, Lu J, Meng B, Niu X, Dong X, Liang Z, Zong B, Ning Y, Lan J, Edwards R L (2021). Collapse of the Liangzhu and other Neolithic cultures in the lower Yangtze region in response to climate change. Sci Adv, 7(48): eabi9275

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Lu H, Jia J, Shen C, Wang S, Chu G, Wang L, Cui A, Liu J, Wu N, Li F (2020a). Seasonal drought events in tropical East Asia over the last 60,000 y. Proc Natl Acad Sci USA, 117(49): 30988–30992

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Cheng H, Edwards R L, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson K R (2008). A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322(5903): 940–942

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang T, Yang X, Chen Q, Toney J L, Zhou Q, Gao H (2020b). Humidity variations spanning the ‘Little Ice Age’ from an upland lake in southwestern China. The Holocene, 30(2): 289–299

    Article  ADS  Google Scholar 

  • Zhang W, Yan H, Liu C, Cheng P, Li J, Lu F, Ma X, Dodson J, Heijnis H, Zhou W, An Z (2018). Hydrological changes in Shuangchi Lake, Hainan Island, tropical China, during the Little Ice Age. Quater Intern, 487: 54–60

    Article  ADS  Google Scholar 

  • Zhang Y G, Ji J F, Balsam W L, Liu L W, Chen J (2007). High resolution hematite and goethite records from ODP 1143, South China Sea: co-evolution of monsoonal precipitation and El Nino over the past 600000 years. Earth Planet Sci Let, 264(1–2): 136–150

    Article  ADS  CAS  Google Scholar 

  • Zhu Z, Feinberg J M, Xie S, Bourne M D, Huang C, Hu C, Cheng H (2017). Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China. Proc Natl Acad Sci USA, 114(5): 852–857

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is supported by the projects of National Second Expedition to the Tibetan Plateau (No. 2019QZKK0707), Guangdong Province Introduced Innovative R&D Team of Geological Processes and Natural Disasters around the South China Sea (No. 2016ZT06N331), the projects of National Natural Science Foundation of China (Grant Nos. 41872217, 41672162, and 41904068) and the Natural Science Foundation of Guangdong Province (No. 2018B030311064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Yang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Yang, X., Yin, J. et al. Low-latitude hydroclimate changes related to paleomagnetic variations during the Holocene in coastal southern China. Front. Earth Sci. (2024). https://doi.org/10.1007/s11707-022-1009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11707-022-1009-y

Keywords

Navigation