Skip to main content
Log in

Changes of tropical cyclone size in three oceanic basins of the northern hemisphere from 2001 to 2021

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

In this study the changes of tropical cyclone (TC) size from 2001 to 2021 are analyzed based on linear and quadratic curve fittings of the National Hurricane Center (NHC) / Joint Typhoon Warning Center (JTWC) best track data, based on the radius of maximum wind (RMW) and the average radius of 34-kt wind (AR34), in three oceanic basins of the North Atlantic (NATL), the Western North Pacific (WPAC) and the Eastern North Pacific (EPAC). The computations are done separately for two categories of tropical cyclones: tropical storms (TS) and hurricanes (HT). Size changes of landfalling and non-landfalling TCs are also discussed. Results show that there is a great inter-basin variability among the changes in TC sizes. Major conclusions include: 1) overall, the inner cores of TSs have become larger in all three basins, with the increasing tendencies being significant in the NATL and WAPC, while those of HTs mostly get smaller or remain similar; 2) meanwhile, comparatively large inter-basin differences are observed for the TC outer core sizes, and the sizes of landfalling TCs; 3) particularly, a significant decrease in landfalling HT outer core size is observed over the EPAC; 4) in contrast, significant increases in landfalling TS inner core size are found over the NATL and WPAC. The presented analysis results could benefit future research about TC forecasts, storm surge studies, and the cyclone climate and its changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbosa S M (2011). Testing for deterministic trends in global sea surface temperature. J Clim, 24(10): 2516–2522

    Article  ADS  Google Scholar 

  • Carrasco C, Landsea C, Lin Y (2014). The influence of tropical cyclone size on its intensification. Weather Forecast, 29(3): 582–590

    Article  ADS  Google Scholar 

  • Chan K T F, Chan J C L (2015). Global climatology of tropical cyclone size as inferred from QuikSCAT data. Int J Climatol, 35(15): 4843–4848

    Article  Google Scholar 

  • Chavas D R, Emanuel K A (2010). A QuikSCAT climatology of tropical cyclone size. Geophys Res Lett, 37(18): L18816

    Article  ADS  Google Scholar 

  • Chavas D R, Lin N, Emanuel K (2015). A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J Atmos Sci, 72(9): 3647–3662

    Article  ADS  Google Scholar 

  • Chen D Y C, Cheung K K W, Lee C S (2011). Some implications of core regime wind structures in western North Pacific tropical cyclones. Weather Forecast, 26(1): 61–75

    Article  ADS  CAS  Google Scholar 

  • Demuth J, DeMaria M, Knaff J A (2006). Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. J Appl Meteorol Climatol, 45(11): 1573–1581

    Article  ADS  Google Scholar 

  • Doocy S, Dick A, Daniels A, Kirsch T D (2013). The human impact of tropical cyclones: a historical review of events 1980–2009 and systematic literature review. PLoS Curr, doi: https://doi.org/10.1371/currents.dis.2664354a5571512063ed29ed29d25ffbce74

  • Emanuel K (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051): 686–688

    Article  ADS  CAS  PubMed  Google Scholar 

  • Emanuel K A (2012). Self-stratification of tropical cyclone outflow. Part II: implications for storm intensification. J Atmos Sci, 69(3): 988–996

    Article  ADS  Google Scholar 

  • Emanuel K A, Sobel A (2013). Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. J Adv Model Earth Syst, 5(2): 447–458

    Article  Google Scholar 

  • Emanuel K A, Sundararajan R, Williams J (2008). Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc, 89(3): 347–368

    Article  ADS  Google Scholar 

  • Grinsted A, Moore J C, Jevrejeva S (2012). Homogeneous record of Atlantic hurricane surge threat since 1923. Proc Natl Acad Sci USA, 109(48): 19601–19605

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Irish J L, Resio D T, Ratcliff J J (2008). The influence of storm size on hurricane surge. J Phys Oceanogr, 38(9): 2003–2013

    Article  ADS  Google Scholar 

  • Islam M R, Lee C Y, Mandli K T, Takagi H (2021). A new tropical cyclone surge index incorporating the effects of coastal geometry, bathymetry and storm information. Sci Rep, 11(1): 16747

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam M R, Satoh M, Takagi H (2022). Tropical cyclones affecting Japan central coast and changing storm surge hazard since 1980. J Meteorol Soc Jpn, 100(3): 493–507

    Article  Google Scholar 

  • Jin F F, Boucharel J, Lin I I (2014). Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature, 516(7529): 82–85

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kimball S K, Mulekar M S (2004). A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J Climate, 17: 3555–3575

    Article  ADS  Google Scholar 

  • Kishimoto K (2008). Revision of JMA’s early stage Dvorak analysis and its use to analyze tropical cyclones in the early developing stage. RSMC Tokyo-Typhoon Center Technical Review, 10: 1–12

    Google Scholar 

  • Klotzbach P J (2006). Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys Res Lett, 33(10): L10805

    Article  ADS  Google Scholar 

  • Klotzbach P J, Bell M M, Bowen S G, Gibney E J, Knapp K R, Schreck C J (2020). Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind. Bull Am Meteorol Soc, 101(6): E830–E846

    Article  ADS  Google Scholar 

  • Klotzbach P J, Landsea C W (2015). Extremely intense hurricanes: revisiting Webster et al. (2005) after 10 Years. J Clim, 28(19): 7621–7629

    Article  ADS  Google Scholar 

  • Knaff J A, Longmore S P, Molenar D A (2014). An objective satellite-based tropical cyclone size climatology. J Clim, 27(1): 455–476

    Article  ADS  Google Scholar 

  • Knapp K R, Kruk M C, Levinson D H, Diamond H J, Neumann C J (2010). The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone best track data. Bull Am Meteorol Soc, 91(3): 363–376

    Article  ADS  Google Scholar 

  • Kossin J P (2017). Hurricane intensification along United States coast suppressed during active hurricane periods. Nature, 541(7637): 390–393

    Article  ADS  CAS  PubMed  Google Scholar 

  • Landsea C W, Franklin J L (2013). Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev, 141(10): 3576–3592

    Article  ADS  Google Scholar 

  • Landsea C W, Pielke Jr R A, Mestas-Nunez A M, Knaff J A (1999). Atlantic basin hurricanes: indices of climatic changes. Climatic Change, 42(1): 89–129

    Article  Google Scholar 

  • Landsea C W, Vecchi G A, Bengtsson L, Knutson T R (2010). Impact of duration thresholds on Atlantic tropical cyclone counts. J Clim, 23(10): 2508–2519

    Article  ADS  Google Scholar 

  • Lin Y, Zhao M, Zhang M (2015). Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat Commun, 6(1): 6591

    Article  ADS  CAS  PubMed  Google Scholar 

  • Martinez-Sanchez J N, Cavazos T (2014). Eastern Tropical Pacific hurricane variability and landfalls on Mexican coasts. Clim Res, 58(3): 221–234

    Article  Google Scholar 

  • McDonald J H (2014). Handbook of Biological Statistics (3rd ed.). Baltimore: Sparky House Publishing

    Google Scholar 

  • Mei W, Xie S P, Primeau F, McWilliams J C, Pasquero C (2015). Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci Adv, 1(4): e1500014

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Merrill R T (1984). A comparison of large and small tropical cyclones. Mon Weather Rev, 112(7): 1408–1418

    Article  ADS  Google Scholar 

  • Nekkali Y S, Osuri K K, Das A K (2022). Numerical modeling of tropical cyclone size over the Bay of Bengal: influence of microphysical processes and horizontal resolution. Meteorol Atmos Phys, 134(4): 72

    Article  ADS  Google Scholar 

  • Rotunno R, Emanuel K A (1987). An air-sea interaction theory for tropical cyclones. Part II: evolutionary study using a nonhydrostatic axisymmetric numerical model. J Atmos Sci, 44(3): 542–561

    Article  ADS  Google Scholar 

  • Shen W (2006). Does the size of hurricane eye matter with its intensity? Geophys Res Lett, 33(18): L18813

    Article  ADS  Google Scholar 

  • Shou H R, Li T, Sun Y, Wang L, Liu J (2021). Decreasing trend of western North Pacific tropical cyclone inner-core size over the past decades. J Meteorol Res, 35(4): 635–645

    Article  Google Scholar 

  • Stern D P, Vigh J L, Nolan D S, Zhang F (2015). Revisiting the relationship between eyewall contraction and intensification. J Atmos Sci, 72(4): 1283–1306

    Article  ADS  Google Scholar 

  • Takagi H, Wu W (2016). Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific. Nat Hazards Earth Syst Sci, 16(3): 705–717

    Article  ADS  Google Scholar 

  • Wang B, Yang Y, Ding Q H, Murakami H, Huang F (2010). Climate control of the global tropical storm days (1965–2008). Geophys Res Let, 37: L07704

    Article  ADS  Google Scholar 

  • Webster P J, Holland G J, Curry J A, Chang H R (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742): 1844–1846

    Article  ADS  CAS  PubMed  Google Scholar 

  • Xu J, Wang Y (2010a). Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon Weather Rev, 138(11): 4135–4157

    Article  ADS  Google Scholar 

  • Xu J, Wang Y (2010b). Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J Atmos Sci, 67(6): 1831–1852

    Article  ADS  Google Scholar 

  • Xu J, Wang Y, Tan Z M (2016). The relationship between sea surface temperature and maximum intensification rate of tropical cyclones in the North Atlantic. J Atmos Sci, 73(12): 4979–4988

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Guangdong Province Introduction of Innovative R&D Team Project China (No. 2019ZT08G669), the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110275), the Guangdong Science and Technology Key Project (No. 21080208). We would also like to thank the HWRF team of NOAA/NCEP/EMC for making this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banglin Zhang.

Ethics declarations

Competing Interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Leung, J.CH., Liu, S. et al. Changes of tropical cyclone size in three oceanic basins of the northern hemisphere from 2001 to 2021. Front. Earth Sci. (2024). https://doi.org/10.1007/s11707-022-1064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11707-022-1064-4

Keywords

Navigation