Skip to main content
Log in

Harnessing the potential of mutation breeding, CRISPR genome editing, and beyond for sustainable agriculture

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

By 2050, the global population is projected to exceed 9.5 billion, posing a formidable challenge to ensure food security worldwide. To address this pressing issue, mutation breeding in horticultural crops, utilizing physical or chemical methods, has emerged as a promising biotechnological strategy. However, the efficacy of these mutagens can be influenced by various factors, including biological and environmental variables, as well as targeted plant materials. This review highlights the global challenges related to food security and explores the potential of mutation breeding as an indispensable biotechnological tool in overcoming food insecurity. This review also covers the emergence of CRISPR-Cas9, a breakthrough technology offering precise genome editing for the development of high-yield, stress-tolerant crops. Together, mutation breeding and CRISPR can potentially address future food demands. This review focuses into these biotechnological advancements, emphasizing their combined potential to fortify global food security in the face of a booming population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Ai P, Xue D, Wang Y, Zeng S (2023) An efficient improved CRISPR mediated gene function analysis system established in Lycium ruthenicum Murr. Ind Crops Prod 192:116142

    Article  CAS  Google Scholar 

  • Alfatih A, Wu J, Jan SU, Zhang ZS, Xia JQ, Xiang CB (2020) Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ 43(11):2743–2754

    Article  CAS  PubMed  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:1–11

    Article  CAS  Google Scholar 

  • Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslam MA, Hammad M, Ahmad A, Altenbuchner J, Ali H (2021) Delivery methods, resources and design tools in CRISPR/Cas. In: CRISPR crops: the future of food security. Springer, Singapore, pp 63–116

  • Bao A, Burritt DJ, Chen H, Zhou X, Cao D, Tran L-SP (2019) The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol 39(3):321–336

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar G, Bingru H (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014. https://doi.org/10.1155/2014/701596

  • Biswas S, Ibarra O, Shaphek M, Molina‐Risco M, Faion‐Molina M, Bellinatti‐Della Gracia M, Thomson MJ, Septiningsih EM (2022) Increasing the level of resistant starch in ‘Presidio’rice through multiplex CRISPR–Cas9 gene editing of starch branching enzyme genes. The Plant Genome 16(2):e20225

  • Bondy-Denomy J (2018) Protein inhibitors of CRISPR-Cas9. ACS Chem Biol 13(2):417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castronuovo D, Tataranni G, Lovelli S, Candido V, Sofo A, Scopa A (2014) UV-C irradiation effects on young tomato plants: preliminary results. Pak J Bot 46(3):945–949

    CAS  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Char SN, Wei J, Mu Q, Li X, Zhang ZJ, Yu J, Yang B (2020) An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnol J 18(2):319

    Article  ADS  PubMed  Google Scholar 

  • Cheema A, Awan M (1991) Analysis of a six parent diallel cross in mutants of Basmati rice. Pak J Bot 23(1):70–77

    Google Scholar 

  • Chen G, Hu J, Dong L, Zeng D, Guo L, Zhang G, Zhu L, Qian Q (2019) The tolerance of salinity in rice requires the presence of a functional copy of FLN2. Biomolecules 10(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Hill C, Han Y, He T, Ye X, Shabala S, Guo G, Zhou M, Wang K, Li C (2023) New semi-dwarfing alleles with increased coleoptile length by gene editing of gibberellin 3-oxidase 1 using CRISPR-Cas9 in barley (Hordeum vulgare L.). Plant Biotechnol J 21(4):806–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou T-J, Aung K, Lin S-I, Wu C-C, Chiang S-F, Su C-l (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18(2):412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cropwatch (2021) Plant disease: pathogens and cycles. https://cropwatch.unl.edu/soybean-management/plant-disease. Accessed 16 Nov 2023

  • Dias JS, Ryder EJ (2011) World vegetable industry: production, breeding, trends. Hortic Rev 38:299–356. https://doi.org/10.1002/9780470872376.ch8

    Article  CAS  Google Scholar 

  • Du M, Zhou K, Liu Y, Deng L, Zhang X, Lin L, Zhou M, Zhao W, Wen C, Xing J (2020) A biotechnology-based male-sterility system for hybrid seed production in tomato. Plant J 102(5):1090–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang H, Meng Q, Xu J, Tang H, Tang S, Zhang H, Huang J (2015) Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol Biol 87:441–458

    Article  CAS  PubMed  Google Scholar 

  • Fauser F, Schiml S, Puchta H (2014) Both CRISPR/C as-based nucleases and nickases can be used efficiently for genome engineering in A rabidopsis thaliana. Plant J 79(2):348–359

    Article  CAS  PubMed  Google Scholar 

  • Food Aid Foundation (2019) Hunger statistics. https://www.foodaidfoundation.org/world-hunger-statistics.html. Accessed 10 Nov 2022

  • Food and Agriculture Organization of the United Nations (2020a) Hunger and food insecurity. http://www.fao.org/hunger/en/. Accessed 16 Nov 2023

  • Food and Agriculture Organization of the United Nations (2020b) Plant pests and diseases. http://www.fao.org/emergencies/emergency-types/plant-pests-and-diseases/en/. Accessed 17 June 2021

  • Futsuhara Y (1968) Breeding of a new rice variety Reimei by gamma-ray irradiation. In: Gamma Field Symp. No. 7, 87–109. 1968. Nagoya Univ., Japan

  • Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242

    Article  CAS  PubMed  Google Scholar 

  • Gibson GJ, Yang M (2017) What rheumatologists need to know about CRISPR/Cas9. Nat Rev Rheumatol 13(4):205–216. https://doi.org/10.1038/nrrheum.2017.6

    Article  CAS  PubMed  Google Scholar 

  • Haq SIU, Zheng D, Feng N, Jiang X, Qiao F, He J-S, Qiu Q-S (2022) Progresses of CRISPR/Cas9 genome editing in forage crops. J Plant Physiol 279:153860

  • Hoffie RE, Perovic D, Habekuß A, Ordon F, Kumlehn J (2023) Novel resistance to the Bymovirus BaMMV established by targeted mutagenesis of the PDIL5-1 susceptibility gene in barley. Plant Biotechnol J 21(2):331–341

    Article  CAS  PubMed  Google Scholar 

  • Hooghvorst I, López-Cristoffanini C, Nogués S (2019) Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon. Sci Rep 9(1):1–7

    Article  CAS  Google Scholar 

  • Huang X-Y, Chao D-Y, Gao J-P, Zhu M-Z, Shi M, Lin H-X (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23(15):1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Atomic Energy Agency (2004) Directory of Gamma Processing Facilities in Member States. https://www-pub.iaea.org/books/iaeabooks/6914/Directory-of-Gamma-Processing-Facilities-in-Member-States. Accessed 17 June 2021

  • International Atomic Energy Agency (2011) Mutation breeding. https://www.iaea.org/topics/mutation-breeding. Accessed 17 June 2021

  • Jain SM (2010) Mutagenesis in crop improvement under the climate change. Rom Biotechnol Lett 15(2):88–106

    MathSciNet  Google Scholar 

  • Jardim SS, Schuch AP, Pereira CM, Loreto ELS (2015) Effects of heat and UV radiation on the mobilization of transposon mariner-Mos1. Cell Stress Chaperones 20(5):843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnol J15(7):817–823

    Article  Google Scholar 

  • Kai H, Iba K (2014) Temperature Stress in Plants. In: eLS. John Wiley & Sons, Ltd (Ed). https://doi.org/10.1002/9780470015902.a0001320.pub2

  • Kerr A (2016) Biological control of crown gall. Australas Plant Pathol 45:15–18

    Article  Google Scholar 

  • Khan S, Al-Qurainy F, Anwar F (2009) Sodium Azide: a chemical mutagen for enhancement of agronomic traits of crop plants. Environ We Int J Sci Tech 4:1–21

  • Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565(7737):91–95

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 33–38

    Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim JH, Jang YH, Yu J, Bae S, Kim M-S, Cho Y-G, Jung YJ, Kang KK (2023) Transcriptome and metabolite profiling of tomato SGR-knockout null lines using the CRISPR/Cas9 system. Int J Mol Sci 24(1):109

    Article  CAS  Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol 236:189–204

    CAS  PubMed  Google Scholar 

  • Kovacs E, Keresztes A (2002) Effect of gamma and UV-B/C radiation on plant cells. Micron 33(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot 66(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Kuppu S, Ron M, Marimuthu MP, Li G, Huddleson A, Siddeek MH, Terry J, Buchner R, Shabek N, Comai L (2020) A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol J 18(10):2068–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6(26). https://doi.org/10.3389/fchem.2018.00026

  • Liao S, Qin X, Luo L, Han Y, Wang X, Usman B, Nawaz G, Zhao N, Liu Y, Li R (2019) CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agron 9(11):728

    Article  CAS  Google Scholar 

  • Liu H, Wang K, Jia Z, Gong Q, Lin Z, Du L, Pei X, Ye X (2020) Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot 71(4):1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang S, Jiang Y, Yan T, Fang C, Hou Q, Wu S, Xie K, An X, Wan X (2022) Use of CRISPR/Cas9-based gene editing to simultaneously mutate multiple homologous genes required for pollen development and male fertility in maize. Cells 11(3):439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou D, Wang H, Yu D (2018) The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol 18:1–17

    Article  ADS  Google Scholar 

  • Ma J, Chen J, Wang M, Ren Y, Wang S, Lei C, Cheng Z (2018) Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J Exp Bot 69(5):1051–1064

    Article  CAS  PubMed  Google Scholar 

  • Maluszynksi M (2001) Officially released mutant varieties – The FAO/IAEA Database. Plant Cell Tissue Organ Cult 65:175–177

    Article  Google Scholar 

  • Mehta K, Parker A (2011) Characterization and dosimetry of a practical X-ray alternative to self-shielded gamma irradiators. Radiat Phys Chem 80(1):107–113

    Article  ADS  CAS  Google Scholar 

  • Misra AK (2014) Climate change and challenges of water and food security. Int J Sustain Built Environ 3(1):153–165

    Article  Google Scholar 

  • Naveed M, Javed J, Waheed U, Sajid M, Ijaz M, Sehar A, Attique M, Javed S (2022) The role of CRISPR/Cas9 for genetic advancement of soybean: a review. Asian J Biotechnol Genet Eng 5(4):75–88

    Google Scholar 

  • Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157(1):242–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh NS, Tucker EJ, Baumann U, Langridge P, Whitford R (2019) CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol J 17(10):1905–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osei MK, Asante MD, Agyeman A, Adebayo MA, Adu-Dapaah H (2014) Plant breeding: a tool for achieving food sufficiency. Sustain Hort Syst 2:253–274. https://doi.org/10.1007/978-3-319-06904-3_11

    Article  Google Scholar 

  • Peterson BA, Haak DC, Nishimura MT, Teixeira PJ, James SR, Dangl JL, Nimchuk ZL (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS ONE 11(9):e0162169

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17(8):1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Wang J, Chen X, Wang F, Peng P, Zhou Y, Miao Y, Zhang Y, Gao Y, Qi Y (2019) Rice Os DOF 15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol 223(2):798–813

    Article  CAS  PubMed  Google Scholar 

  • Raina A, Laskar RA, Khursheed S, Amin R, Tantray YR, Parveen K, Khan S (2016) Role of mutation breeding in crop improvement- past, present and future. Asian Res J Agric 2(2):1–13

    Google Scholar 

  • Redman M, King A, Watson C, King D (2016) What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed 101(4):213–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki H, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian C iona intestinalis. Dev Growth Differ 56(7):499–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savary S, Bregaglio S, Willocquet L, Gustafson D, Mason D’Croz D, Sparks A, Castilla N, Djurle A, Allinne C, Sharma M (2017) Crop health and its global impacts on the components of food security. Food Secur 9:311–327

    Article  Google Scholar 

  • Save the Children (2012) Nutrition in the First 1,000 Days- State of the World’s Mothers 2012. https://www.savethechildren.org/content/dam/usa/reports/advocacy/sowm/sowm-2012.pdf

  • Schepler-Luu V, Sciallano C, Stiebner M, Ji C, Boulard G, Diallo A, Auguy F, Char SN, Arra Y, Schenstnyi K (2023) Genome editing of an African elite rice variety confers resistance against endemic and emerging Xanthomonas oryzae pv. oryzae strains. eLife 12:e84864

  • Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68(4):686–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017) Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60:539–547

    Article  CAS  Google Scholar 

  • Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim J-K (2018) Overexpression of OsNAC14 improves drought tolerance in rice. Front Plant Sci 9:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu QY (2009) Turning plant mutation breeding into a new era: molecular mutation breeding. In: Induced plant mutations in the genomics era. International Atomic Energy Agency (IAEA) and Food and Agriculture Organization (FAO), Rome, Italy, pp 425–427

  • Shu QY, Lagoda PJL (2007) Mutation techniques for gene discovery and crop improvement. Mol Plant Breed 5:193–195

    Google Scholar 

  • Singh M, Kumar M, Albertsen MC, Young JK, Cigan AM (2018) Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol Biol 97:371–383

    Article  CAS  PubMed  Google Scholar 

  • Singh T, Singh A, Wang W, Yadav D, Kumar A, Singh PK (2019) Biosynthesized nanoparticles and its implications in agriculture. In: Biological synthesis of nanoparticles and their applications. CRC Press, Boca Raton, Florida, USA, pp 257–274

  • Spencer-Lopes MM, Forster BP, Jankuloski L (eds) (2018) Manual on mutation breeding - third edition. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945

    Article  PubMed  PubMed Central  Google Scholar 

  • United Nations (2017) World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html#:~:text=The%20current%20world%20population%20of,Nations%20report%20being%20launched%20today

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y-G, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11(4):e0154027

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, Wang Y, Wang X (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16(4):844–855

    Article  CAS  PubMed  Google Scholar 

  • Wang W-C, Lin T-C, Kieber J, Tsai Y-C (2019) Response regulators 9 and 10 negatively regulate salinity tolerance in rice. Plant Cell Physiol 60(11):2549–2563

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, Song W, Zheng X, Chen C, Zhang Y (2020) Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int J Mol Sci 21(7):2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani MR (2017) High yielding mutants in chickpea (Cicer arietinum L.). Res Crops 18(4):726–729

    Article  MathSciNet  Google Scholar 

  • Wilde DH, Chen Y, Jiang P, Bhattacharya A (2012) Targeted mutation breeding of horticultural plants. Emir J Food Agric 24(1):31–41

    Article  Google Scholar 

  • Yang Z, Bai Z, Li X, Wang P, Wu Q, Yang L, Li L, Li X (2012) SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theor Appl Genet 125:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wu J-J, Tang T, Liu K-D, Dai C (2017) CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep 7(1):7489

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4(8):530–533

    Article  CAS  PubMed  Google Scholar 

  • Yin W, Xiao Y, Niu M, Meng W, Li L, Zhang X, Liu D, Zhang G, Qian Y, Sun Z (2020) ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice. Plant Cell 32(7):2292–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q-h, Wang B, Li N, Tang Y, Yang S, Yang T, Xu J, Guo C, Yan P, Wang Q (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep 7(1):11874

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Qin P, Hu L, Zhan S, Wang S, Gao P, Li J, Jin M, Xu Z, Gao Q (2019) OsSPL18 controls grain weight and grain number in rice. J Genet Genom 46(1):41–51

    Article  CAS  Google Scholar 

  • Zafar SA, Zaidi SS-e-A, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A (2020) Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot 71(2):470–479

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zheng Q, Yi X, An H, Zhao Y, Ma S, Zhou G (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J 16(8):1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Srivastava AK, Sadanandom A (2019) Targeted mutagenesis of the SUMO protease, Overly Tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance. BioRxiv:555706

  • Zhang R, Zhang S, Li J, Gao J, Song G, Li W, Geng S, Liu C, Lin Y, Li Y (2023) CRISPR/Cas9-targeted mutagenesis of TaDCL4, TaDCL5 and TaRDR6 induces male sterility in common wheat. Plant Biotechnol J 21(4):839–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Qi Y, Yang Z, Cheng L, Sharif R, Raza A, Chen P, Hou D, Li Y (2022) Exploring the Agrobacterium-mediated transformation with CRISPR/Cas9 in cucumber (Cucumis sativus L.). Mol Biol Rep 49:11481–11490

  • Zhong Z, Sretenovic S, Ren Q, Yang L, Bao Y, Qi C, Yuan M, He Y, Liu S, Liu X (2019) Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol Plant 12(7):1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Xin X, He Y, Chen H, Li Q, Tang X, Zhong Z, Deng K, Zheng X, Akher SA (2019) Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep 38:475–485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Universiti Malaya, Malaysia for the experimental facilities and financial support (IIRG009A-19FNW) provided.

Funding

This research was funded by Universiti Malaya (IIRG009A-19FNW).

Author information

Authors and Affiliations

Authors

Contributions

JSY, PG and VK conceived and designed the research. NMNA, SC and JSY conducted the literature search and wrote the manuscript draft. JSY, PG, MHAR and VK revised the draft and proofread the final manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jamilah Syafawati Yaacob.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nor A’azizam, N.M., Chopra, S., Guleria, P. et al. Harnessing the potential of mutation breeding, CRISPR genome editing, and beyond for sustainable agriculture. Funct Integr Genomics 24, 44 (2024). https://doi.org/10.1007/s10142-024-01325-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01325-y

Keywords

Navigation