Skip to main content
Log in

Interaction of gravitational waves with Yang–Mills fields

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we discuss the interaction of non-Abelian SU(2) Yang–Mills progressive waves with gravitational waves. We solve and obtain some interesting solutions to pure Yang–Mills equations in different backgrounds, and perturbative solutions induced due to gravitational waves. These perturbations show ‘beat patterns’ and depending on boundary conditions, changes in frequency. In flat space-time, when the Yang–Mills fields and the gravitational waves are in the same direction there is no interaction, unless there is self interaction of the Yang–Mills fields. In the system with non-zero self interaction the amplitudes of the perturbation are inversely proportional to the Yang–Mills coupling constant. In a cosmological background, the Yang–Mills fields and the gravitational wave interact when they are in the same direction even without self interaction of the Yang–Mills progressive fields. We find that in the electroweak symmetry broken phase of the gauge fields, the interactions are perturbative only for an infinitesimal time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Actor, A.: Classical solutions of su(2) yang-mills theories. Rev. Mod. Phys. 51, 461–525 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  2. Addazi, A., Lundberg, T., Marciana, A., Pasechnik, R., Sumbera, M.: Cosmology from strong interactions. Universe 8, 451 (2022)

    Article  ADS  Google Scholar 

  3. Allen, B.: Stochastic gravity-wave background in inflationary-universe models. Phys. Rev. D 37, 2078–2085 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  4. Allen, B.: The stochastic gravity-wave background: sources and detection. in Relativistic gravitation and gravitational radiation, J.-A. Marck and J.-P. Lasota (eds) p. 373. (1997) arXiv:gr-qc/9604033

  5. Baseian, G.Z., Matinyan, S.G., Savvidy, G.K.: Nonlinear plane waves in massless yang-mills theory. Pisma Zh. Eksp. Teor. Fiz. 29, 641–644 (1979)

    Google Scholar 

  6. Basler, M., Hädicke, A.: On non-abelain su(2) plane waves. Phys. Lett. B 144, 83–86 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. Blaizot, J.-P., Iancu, E.: Non-abelian plane-waves in the quark-gluon plasma. Phys. Lett. B 326, 138–144 (1994)

    Article  ADS  Google Scholar 

  8. Buonanno, A.: TASI Lectures on Gravitational Waves from the Early Universe, arXiv e-prints, (2003) arXiv:gr-qc/0303085 [gr-qc]

  9. Campbell, W., Morgan, T.: Non-abelian plane-fronted waves. Phys. Lett. B 84, 87–88 (1979)

    Article  ADS  Google Scholar 

  10. Coleman, S.: Non-abelian plane waves. Phys. Lett. B 70, 59–60 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  11. Elfner, H., Müller, B.: The exploration of hot and dense nuclear matter: introduction to relativistic heavy-ion physics, arxiv:2210.12056 (2022)

  12. Gosala, N., Dasgupta, A.: Gravitational waves and yang mill’s condensate, preprint (2023)

  13. Huang, W.-C., Reichert, M., Sannino, F., Wang, Z.-W.: Testing the dark su(n) yang-mills theory confined landscape: from the lattice to gravitational waves. Phys. Rev. D 104, 035005 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lo, S.-Y., Desmond, P., Kovacs, E.: General self-dual non-abelian plane waves. Phys. Lett. B 90, 419–421 (1980)

    Article  ADS  Google Scholar 

  15. Morales, S., Dasgupta, A.: Scalar and fermion field interactions with a gravitational wave. Class. Quantum Grav. 37, 105001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. Oh, C.H., Teh, R.: Nonabelian progressive waves. J. Math. Phys. 26, 841–844 (1985). https://doi.org/10.1063/1.526576

    Article  ADS  MathSciNet  Google Scholar 

  17. Patel, A., Dasgupta, A.: Interaction of electromagnetic field with a gravitational wave in minkowski and de-sitter space-time. Phys. Rev. D, under review (2021), arXiv:2108.01788 [gr-qc]

  18. Pich, A.: The standard model of electroweak interactions, Lecture Notes arXiv:1201.0537, 1–50 (2012)

  19. Rabinowitch, A.: Exact axially symmetric wave solutions of the yang-mills equations. Theor. Math. Phys. 148, 1081–1085 (2006)

    Article  MathSciNet  Google Scholar 

  20. Rabinowitch, A.: On a new class of non-abelian expanding waves. Phys. Lett. B 664, 295–300 (2008)

    Article  ADS  Google Scholar 

  21. Rabinowitch, A.: On non-abelian expanding waves. J. Phys. A Math. Theor. 40, 14575 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Raczka, P.A.: Colliding plane waves in non-abelian gauge theory. Phys. Lett. B 177, 60–62 (1986)

    Article  ADS  Google Scholar 

  23. Soliani, G., Rebbi, C.: Solitons and Particles. World Scientific Publishing, Singapore (1984)

    Google Scholar 

  24. Souza, H., Bevilaqua, L.I., Lehum, A.C.: Gravitational corrections to a non-abelian gauge theory. Phys. Rev. D 106, 045010 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  25. Tsapalis, A., Politis, E.P., Maintas, X.N., Diakonos, F.K.: Gauss’ law and nonlinear plane waves for yang-mills theory. Phys. Rev. D 93, 085003 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Weih, L.R., Hanauske, M., Rezzolla, L.: Postmerger gravitational-wave signatures of phase transitions in binary mergers. Phys. Rev. Lett. 124, 171103 (2020)

    Article  ADS  Google Scholar 

  27. Zauderer, E.: Partial Differential Equations of Applied Mathematics. Wiley, Hoboken (2011)

    Google Scholar 

Download references

Acknowledgements

NRG would like to thank MITACS for accelerator grant.

Author information

Authors and Affiliations

Authors

Contributions

This is write up of NRG’s Ph. D. work under AD’s supervision. NRG is therefore the principal author. All authors have reviewed the manuscript.

Corresponding author

Correspondence to Arundhati Dasgupta.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. They also declare no conflict of interest with anyone or the funding agencies for conceptualizing and the publication of the results. The authors declare that the results/data/figures have not been published elsewhere, nor are they in consideration for publication by another publisher. The authors declare that the data supporting the findings of this study are available within the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosala, N.R., Dasgupta, A. Interaction of gravitational waves with Yang–Mills fields. Gen Relativ Gravit 56, 36 (2024). https://doi.org/10.1007/s10714-024-03221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03221-z

Keywords

Navigation