Skip to main content
Log in

Herz und Blut: klonale Hämatopoese

Heart and blood: clonal hematopoiesis

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Herz-Kreislauf-Erkrankungen zählen zu den führenden Todesursachen weltweit, wobei bekannte modifizierbare Risikofaktoren wie Rauchen, Übergewicht, Fettstoffwechselstörungen, Bewegungsmangel und Bluthochdruck eine maßgebliche Rolle spielen. Aktuelle Untersuchungen haben nun die „klonale Hämatopoese“ als neuen blutbasierten Risikofaktor identifiziert. Klonale Hämatopoese entsteht durch Mutationen in hämatopoetischen Stammzellen, die zu einer Expansion von mutierten Blutzellen führen. Bei über 40 % der über 50-Jährigen können Klone mit mutierten Zellen nachgewiesen werden. Über 15 % der über 90-Jährigen haben große Klone. Überraschenderweise neigen mutierte Zellen lediglich in geringem Ausmaß zur Entwicklung von Leukämien, daher der Begriff „clonal hematopoiesis of indeterminate potential“ (CHIP). Es zeigte sich jedoch, dass CHIP mit einem erhöhten Risiko für Herz-Kreislauf-Erkrankungen einhergeht. Menschen mit CHIP-assoziierten Genmutationen haben ein erhöhtes Risiko für atherosklerotische Gefäßerkrankungen, Schlaganfall und Thrombose. Zudem weisen Patienten mit Herzinsuffizienz mit reduzierter Pumpfunktion (HFrEF) ischämischer oder nichtischämischer Genese sowie Patienten mit Herzinsuffizienz mit erhaltener Pumpfunktion (HFpEF) eine erhöhte Anzahl an mutierten Zellen im Blut auf. Das Vorhandensein der CHIP-Mutationen geht mit einer schlechteren Prognose von Patienten mit bestehender Herz-Kreislauf-Erkrankung einher. Zukünftige Forschung sollte die spezifischen Auswirkungen verschiedener Mutationen, Klongrößen und Kombinationen besser entschlüsseln, um personalisierte Therapieansätze zu entwickeln. Es stehen verschiedene antiinflammatorische Therapeutika zur Verfügung, die in kontrollierten Studien getestet werden können.

Abstract

Cardiovascular diseases are among the leading causes of death worldwide, with well-known modifiable risk factors, such as smoking, overweight, lipid metabolism disorders, lack of physical activity and high blood pressure playing a significant role. Recent studies have now identified “clonal hematopoiesis” as a novel blood-based risk factor. Clonal hematopoiesis arises from mutations in hematopoietic stem cells, which lead to the expansion of mutated blood cells. Mutated cell clones can be detected in over 40% of individuals over 50 years old, with more than 15% of those over 90 years old harboring large clones. Surprisingly, mutated cells predispose to the development of leukemia only to a minor extent, leading to the term clonal hematopoiesis of indeterminate potential (CHIP); however, it has been shown that CHIP is associated with an increased risk of cardiovascular diseases. Individuals with CHIP-associated gene mutations have an elevated risk of atherosclerotic vascular diseases, stroke and thrombosis. Patients with heart failure with reduced ejection fraction (HFrEF), whether of ischemic or non-ischemic origin and patients with heart failure with preserved ejection fraction (HFpEF) exhibit an increased number of mutated cells in the blood. The presence of CHIP mutations is linked to a poorer prognosis in patients with existing cardiovascular diseases. Future research should aim at a better understanding of the specific effects of different mutations, clone sizes and combinations to develop personalized therapeutic approaches. Various anti-inflammatory therapeutic drugs are available, which can be tested in controlled studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Magnussen C, Ojeda FM, Leong DP et al (2023) Global effect of modifiable risk factors on cardiovascular disease and mortality. N Engl J Med 389:1273–1285. https://doi.org/10.1056/NEJMoa2206916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Genovese G, Kähler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487. https://doi.org/10.1056/NEJMoa1409405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guermouche H, Ravalet N, Gallay N et al (2020) High prevalence of clonal hematopoiesis in the blood and bone marrow of healthy volunteers. Blood Adv 4:3550–3557. https://doi.org/10.1182/bloodadvances.2020001582

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498. https://doi.org/10.1056/NEJMoa1408617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steensma DP, Bejar R, Jaiswal S et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16. https://doi.org/10.1182/blood-2015-03-631747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaiswal S, Natarajan P, Silver AJ et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377:111–121. https://doi.org/10.1056/NEJMoa1701719

    Article  PubMed  PubMed Central  Google Scholar 

  7. Libby P, Hansson GK (2015) Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res 116:307–311. https://doi.org/10.1161/CIRCRESAHA.116.301313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zekavat SM, Viana-Huete V, Matesanz N et al (2023) TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat Cardiovasc Res 2:144–158. https://doi.org/10.1038/s44161-022-00206-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arends CM, Liman TG, Strzelecka PM et al (2023) Associations of clonal hematopoiesis with recurrent vascular events and death in patients with incident ischemic stroke. Blood 141:787–799. https://doi.org/10.1182/blood.2022017661

    Article  CAS  PubMed  Google Scholar 

  10. Fuster JJ et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–847. https://doi.org/10.1126/science.aag1381

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rauch PJ, Gopakumar J, Silver AJ et al (2023) Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes. Nat Cardiovasc Res 2:805–818. https://doi.org/10.1038/s44161-023-00326-7

    Article  Google Scholar 

  12. Fidler TP, Xue C, Yalcinkaya M et al (2021) The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592:296–301. https://doi.org/10.1038/s41586-021-03341-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frangogiannis NG (2021) Cardiac fibrosis. Cardiovasc Res 117:1450–1488. https://doi.org/10.1093/cvr/cvaa324

    Article  CAS  PubMed  Google Scholar 

  14. Luxán G, Dimmeler S (2022) The vasculature: a therapeutic target in heart failure? Cardiovasc Res 118:53–64. https://doi.org/10.1093/cvr/cvab047

    Article  CAS  PubMed  Google Scholar 

  15. Dorsheimer L, Assmus B, Rasper T et al (2019) Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol 4:25–33. https://doi.org/10.1001/jamacardio.2018.3965

    Article  PubMed  Google Scholar 

  16. Assmus B et al (2021) Clonal haematopoiesis in chronic ischaemic heart failure: prognostic role of clone size for DNMT3A- and TET2-driver gene mutations. Eur Heart J 42:257–265. https://doi.org/10.1093/eurheartj/ehaa845

    Article  CAS  PubMed  Google Scholar 

  17. Yu B et al (2021) Supplemental Association of clonal hematopoiesis with incident heart failure. J Am Coll Cardiol 78:42–52. https://doi.org/10.1016/j.jacc.2021.04.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kiefer KC, Cremer S, Pardali E et al (2021) Full spectrum of clonal haematopoiesis-driver mutations in chronic heart failure and their associations with mortality. ESC Heart Fail 8:1873–1884. https://doi.org/10.1002/ehf2.13297

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cremer S, Kirschbaum K, Berkowitsch A et al (2020) Multiple somatic mutations for clonal hematopoiesis are associated with increased mortality in patients with chronic heart failure. Circ Genom Precis Med 13:e3003. https://doi.org/10.1161/CIRCGEN.120.003003

    Article  PubMed  Google Scholar 

  20. Pascual-Figal DA et al (2021) Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. J Am Coll Cardiol 77:1747–1759. https://doi.org/10.1016/j.jacc.2021.02.028

    Article  PubMed  Google Scholar 

  21. Mas-Peiro S et al (2020) Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur Heart J 41:933–939. https://doi.org/10.1093/eurheartj/ehz591

    Article  CAS  PubMed  Google Scholar 

  22. Cochran JD, Yura Y, Thel MC et al (2023) Clonal hematopoiesis in clinical and experimental heart failure with preserved ejection fraction. Circulation 148:1165–1178. https://doi.org/10.1161/CIRCULATIONAHA.123.064170

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Sano S, Yura Y et al (2020) Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight 5:e135204. https://doi.org/10.1172/jci.insight.135204

    Article  PubMed  PubMed Central  Google Scholar 

  24. Libby P, Ebert BL (2018) CHIP (clonal Hematopoiesis of indeterminate potential): potent and newly recognized contributor to cardiovascular risk. Circulation 138:666–668. https://doi.org/10.1161/CIRCULATIONAHA.118.034392

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abplanalp WT, Mas-Peiro S, Cremer S et al (2020) Association of clonal hematopoiesis of indeterminate potential with inflammatory gene expression in patients with severe degenerative aortic valve Stenosis or chronic Postischemic heart failure. JAMA Cardiol 5:1170–1175. https://doi.org/10.1001/jamacardio.2020.2468

    Article  PubMed  Google Scholar 

  26. Abplanalp WT, Cremer S, John D et al (2021) Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure. Circ Res 128:216–228. https://doi.org/10.1161/CIRCRESAHA.120.317104

    Article  CAS  PubMed  Google Scholar 

  27. Sano S, Oshima K, Wang Y et al (2018) CRISPR-mediated gene editing to assess the roles of TET2 and DNMT3A in clonal hematopoiesis and cardiovascular disease. Circ Res 123:335–341. https://doi.org/10.1161/CIRCRESAHA.118.313225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abplanalp WT, Schuhmacher B, Cremer S et al (2023) Cell-intrinsic effects of clonal hematopoiesis in heart failure. Nat Cardiovasc Res 2:819–834. https://doi.org/10.1038/s44161-023-00322-x

    Article  Google Scholar 

  29. Sano S et al (2018) Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1beta/NLRP3 inflammasome. J Am Coll Cardiol 71:875–886. https://doi.org/10.1016/j.jacc.2017.12.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu W et al (2023) Blockade of IL‑6 signaling alleviates atherosclerosis in Tet2-deficient clonal hematopoiesis. Nat Cardiovasc Res 2:572–586. https://doi.org/10.1038/s44161-023-00281-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bick AG, Pirruccello JP, Griffin GK et al (2020) Genetic Interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141:124–131. https://doi.org/10.1161/CIRCULATIONAHA.119.044362

    Article  CAS  PubMed  Google Scholar 

  32. Cremer S, Katsaouni N, Abplanalp WT et al (2023) Interaction of inherited genetic variants in the NLRP3 inflammasome/IL‑6 pathway with acquired clonal hematopoiesis to modulate mortality risk in patients with HFrEF. medRxiv 2023.05.03.23289436. https://doi.org/10.1101/2023.05.03.23289436

    Book  Google Scholar 

  33. Svensson EC et al (2022) TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol 7:521–528. https://doi.org/10.1001/jamacardio.2022.0386

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shumliakivska M, Luxán G, Hemmerling I et al (2023) DNMT3A clonal hematopoiesis-driver mutations induce cardiac fibrosis by paracrine activation of fibroblasts. bioRxiv 2023.01.07.521766. https://doi.org/10.1101/2023.01.07.521766

    Book  Google Scholar 

  35. Uddin MDM, Nguyen NQH, Yu B et al (2022) Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease. Nat Commun 13:5350. https://doi.org/10.1038/s41467-022-33093-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sano S et al (2022) Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377:292–297. https://doi.org/10.1126/science.abn3100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mas-Peiro S, Abplanalp WT, Rasper T et al (2023) Mosaic loss of Y chromosome in monocytes is associated with lower survival after transcatheter aortic valve replacement. Eur Heart J 44:1943–1952. https://doi.org/10.1093/eurheartj/ehad093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heyde A et al (2021) Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184:1348–1361.e22. https://doi.org/10.1016/j.cell.2021.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Dimmeler.

Ethics declarations

Interessenkonflikt

S. Dimmeler und A. Zeiher geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimmeler, S., Zeiher, A. Herz und Blut: klonale Hämatopoese. Herz 49, 105–110 (2024). https://doi.org/10.1007/s00059-024-05237-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-024-05237-2

Schlüsselwörter

Keywords

Navigation