Planta Med 2024; 90(05): 353-367
DOI: 10.1055/a-2258-6663
Biological and Pharmacological Activity
Reviews

Unveiling Gambogenic Acid as a Promising Antitumor Compound: A Review

Li Mi
Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
,
Zhichao Xing
Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
,
Yujie Zhang
Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
,
Ting He
Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
,
Anping Su
Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
,
Tao Wei
Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
,
Zhihui Li
Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
,
Wenshuang Wu
Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
› Author Affiliations
Supported by: 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University ZYJC21033
Supported by: the project of West China Hospital 19HXFH010
Supported by: Foundation of Sichuan University 2018SCUH0067

Abstract

Gambogenic acid is a derivative of gambogic acid, a polyprenylated xanthone isolated from Garcinia hanburyi. Compared with the more widely studied gambogic acid, gambogenic acid has demonstrated advantages such as a more potent antitumor effect and less systemic toxicity than gambogic acid according to early investigations. Therefore, the present review summarizes the effectiveness and mechanisms of gambogenic acid in different cancers and highlights the mechanisms of action. In addition, drug delivery systems to improve the bioavailability of gambogenic acid and its pharmacokinetic profile are included. Gambogenic acid has been applied to treat a wide range of cancers, such as lung, liver, colorectal, breast, gastric, bladder, and prostate cancers. Gambogenic acid exerts its antitumor effects as a novel class of enhancer of zeste homolog 2 inhibitors. It prevents cancer cell proliferation by inducing apoptosis, ferroptosis, and necroptosis and controlling the cell cycle as well as autophagy. Gambogenic acid also hinders tumor cell invasion and metastasis by downregulating metastasis-related proteins. Moreover, gambogenic acid increases the sensitivity of cancer cells to chemotherapy and has shown effects on multidrug resistance in malignancy. This review adds insights for the prevention and treatment of cancers using gambogenic acid.



Publication History

Received: 24 November 2023

Accepted after revision: 31 January 2024

Accepted Manuscript online:
31 January 2024

Article published online:
29 February 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018; 392: 1736-1788
  • 2 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-249
  • 3 Buyel JF. Plants as sources of natural and recombinant anticancer agents. Biotechnol Adv 2018; 36: 506-520
  • 4 Liu Y, Yang S, Wang K, Lu J, Bao X, Wang R, Qiu Y, Wang T, Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif 2020; 53: e12894
  • 5 Anantachoke N, Tuchinda P, Kuhakarn C, Pohmakotr M, Reutrakul V. Prenylated caged xanthones: chemistry and biology. Pharm Biol 2012; 50: 78-91
  • 6 Han QB, Xu HX. Caged Garcinia xanthones: Development since 1937. Curr Med Chem 2009; 16: 3775-3796
  • 7 Deng YX, Pan SL, Zhao SY, Wu MQ, Sun ZQ, Chen XH, Shao ZY. Cytotoxic alkoxylated xanthones from the resin of Garcinia hanburyi . Fitoterapia 2012; 83: 1548-1552
  • 8 Deng YX, Guo T, Shao ZY, Xie H, Pan SL. Three new xanthones from the resin of Garcinia hanburyi . Planta Med 2013; 79: 792-796
  • 9 Tao SJ, Guan SH, Wang W, Lu ZQ, Chen GT, Sha N, Yue QX, Liu X, Guo DA. Cytotoxic polyprenylated xanthones from the resin of Garcinia hanburyi . J Nat Prod 2009; 72: 117-124
  • 10 Hahnvajanawong C, Boonyanugomol W, Nasomyon T, Loilome W, Namwat N, Anantachoke N, Tassaneeyakul W, Sripa B, Namwat W, Reutrakul V. Apoptotic activity of caged xanthones from Garcinia hanburyi in cholangiocarcinoma cell lines. World J Gastroenterol 2010; 16: 2235-2243
  • 11 Vichitsakul K, Laowichuwakonnukul K, Soontornworajit B, Poomipark N, Itharat A, Rotkrua P. Anti-proliferation and induction of mitochondria-mediated apoptosis by Garcinia hanburyi resin in colorectal cancer cells. Heliyon 2023; 9: e16411
  • 12 Wang LL, Li ZL, Song DD, Sun L, Pei YH, Jing YK, Hua HM. Two novel triterpenoids with antiproliferative and apoptotic activities in human leukemia cells isolated from the resin of Garcinia hanburyi . Planta Med 2018; 74: 1735-1740
  • 13 Boueroy P, Hahnvajanawong C, Boonmars T, Saensa-Ard S, Anantachoke N, Vaeteewoottacharn K, Reutrakul V. Antitumor effect of forbesione isolated from Garcinia hanburyi on cholangiocarcinoma in vitro and in vivo . Oncol Lett 2016; 12: 4685-4698
  • 14 Wang W, Li Y, Chen Y, Chen H, Zhu P, Xu M, Wang H, Wu M, Yang Z, Hoffman RM, Gu Y. Ethanolic extract of traditional Chinese medicine (TCM) gamboge inhibits colon cancer via the Wnt/β-catenin signaling pathway in an orthotopic mouse model. Anticancer Res 2018; 38: 1917-1925
  • 15 Yang J, He S, Li S, Zhang R, Peng A, Chen L. In vitro and in vivo antiangiogenic activity of caged polyprenylated xanthones isolated from Garcinia hanburyi Hook. f. Molecules 2013; 18: 15305-15313
  • 16 Reutrakul V, Anantachoke N, Pohmakotr M, Jaipetch T, Sophasan S, Yoosook C, Kasisit J, Napaswat C, Santisuk T, Tuchinda P. Cytotoxic and anti-HIV-1 caged xanthones from the resin and fruits of Garcinia hanburyi . Planta Med 2007; 73: 33-40
  • 17 Reutrakul V, Anantachoke N, Pohmakotr M, Jaipetch T, Yoosook C, Kasisit J, Napaswa C, Panthong A, Santisuk T, Prabpai S, Kongsaeree P, Tuchinda P. Anti-HIV-1 and anti-inflammatory lupanes from the leaves, twigs, and resin of Garcinia hanburyi . Planta Med 2009; 76: 368-371
  • 18 Sukpondma Y, Rukachaisirikul V, Phongpaichit S. Antibacterial caged-tetraprenylated xanthones from the fruits of Garcinia hanburyi . Chem Pharm Bull (Tokyo) 2005; 53: 850-852
  • 19 Panthong A, Norkaew P, Kanjanapothi D, Taesotikul T, Anantachoke N, Reutrakul V. Anti-inflammatory, analgesic and antipyretic activities of the extract of gamboge from Garcinia hanburyi Hook. f. J Ethnopharmacol 2007; 111: 335-340
  • 20 Jia B, Li S, Hu X. Recent research on bioactive xanthones from natural medicine: Garcinia hanburyi . AAPS PharmSciTech 2015; 16: 742-758
  • 21 Song JZ, Yip YK, Han QB, Oiao CF, Xu HX. Rapid determination of polyprenylated xanthones in gamboge resin of Garcinia hanburyi by HPLC. J Sep Sci 2007; 30: 304-309
  • 22 Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874: 188381
  • 23 Liu Y, Chen Y, Lin L, Li H. Gambogic acid as a candidate for cancer therapy: A review. Int J Nanomedicine 2020; 15: 10385-10399
  • 24 Banik K, Harsha C, Bordoloi D, Sailo BL, Sethi G, Leong HC, Arfuso F, Mishra S, Wang L, Kumar AP, Kunnumakkara AB. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett 2018; 416: 75-86
  • 25 Yang LJ, Chen Y. New targets for the antitumor activity of gambogic acid in hematologic malignancies. Acta Pharmacol Sin 2013; 34: 191-198
  • 26 Chi Y, Zhan XK, Yu H, Xie GR, Wang ZZ, Xiao W, Wang YG, Xiong FX, Hu JF, Yang L, Cui CX, Wang JW. An open-labeled, randomized, multicenter phase IIa study of gambogic acid injection for advanced malignant tumors. Chin Med J 2013; 26: 1642-1646
  • 27 Asano J, Chiba K, Tada M, Yoshii T. Cytotoxic xanthones from Garcinia hanburyi . Phytochemistry 1996; 41: 815-820
  • 28 Ding Z, Li Y, Tang Z, Song X, Jing F, Wu H, Lu B. Role of gambogenic acid in regulating PI3K/Akt/NF-κB signaling pathways in rat model of acute hepatotoxicity. Biosci Biotechnol Biochem 2021; 85: 520-527
  • 29 Yu X, Zhao Q, Zhang H, Fan C, Zhang X, Xie Q, Xu C, Liu Y, Wu X, Han Q, Zhang H. Gambogenic acid inhibits LPS-simulated inflammatory response by suppressing NF-κB and MAPK in macrophages. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). Acta Biochim Biophys Sin 2016; 48: 454-461
  • 30 Tao S, Yang L, Wu C, Hu Y, Guo F, Ren Q, Ma L, Fu P. Gambogenic acid alleviates kidney fibrosis via epigenetic inhibition of EZH2 to regulate Smad7-dependent mechanism. Phytomedicine 2022; 106: 154390
  • 31 Zeng J, Huang TY, Wang ZZ, Gong YF, Liu XC, Zhang XM, Huang XY. Scar-reducing effects of gambogenic acid on skin wounds in rabbit ears. Int Immunopharmacol 2021; 90: 107200
  • 32 Wang X, Cao W, Zhang J, Yan M, Xu Q, Wu X, Wan L, Zhang Z, Zhang C, Qin X, Xiao M, Ye D, Liu Y, Han Z, Wang S, Mao L, Wei W, Chen W. A covalently bound inhibitor triggers EZH2 degradation through CHIP-mediated ubiquitination. EMBO J 2017; 36: 1243-1260
  • 33 Chen R, Zhang H, Liu P, Wu X, Chen B. Gambogenic acid synergistically potentiates bortezomib-induced apoptosis in multiple myeloma. J Cancer 2017; 8: 839-851
  • 34 Li F, Wang Y, Yan Y. Gambogenic acid induces cell growth inhibition, cell cycle arrest and metastasis inhibition in choroidal melanoma in a dose-dependent manner. Exp Ther Med 2017; 13: 2456-2462
  • 35 Li Q, Cheng H, Zhu G, Yang L, Zhou A, Wang X, Fang N, Xia L, Su J, Wang M, Peng D, Xu Q. Gambogenic acid inhibits proliferation of A549 cells through apoptosis-inducing and cell cycle arresting. Biol Pharm Bull 2010; 33: 415-420
  • 36 Zhao Q, Zhong J, Bi Y, Liu Y, Liu Y, Guo J, Pan L, Tan Y, Yu X. Gambogenic acid induces Noxa-mediated apoptosis in colorectal cancer through ROS-dependent activation of IRE1α/JNK. Phytomedicine 2020; 78: 153306
  • 37 Huang T, Zhang H, Wang X, Xu L, Jia J, Zhu X. Gambogenic acid inhibits the proliferation of small-cell lung cancer cells by arresting the cell cycle and inducing apoptosis. Oncol Rep 2019; 41: 1700-1706
  • 38 Yu XJ, Han QB, Wen ZS, Ma L, Gao J, Zhou GB. Gambogenic acid induces G1 arrest via GSK3β-dependent cyclin D1 degradation and triggers autophagy in lung cancer cells. Cancer Lett 2012; 322: 185-194
  • 39 Zhou J, Luo YH, Wang JR, Lu BB, Wang KM, Tian Y. Gambogenic acid induction of apoptosis in a breast cancer cell line. Asian Pac J Cancer Prev 2013; 14: 7601-7605
  • 40 Huang P, Yang LL, Wang CY, Chen JP, Wang SS, Wang SJ, Chen YJ, Wang DL, Huang HP. Preparation and characterization of folate targeting magnetic nanomedicine loaded with gambogenic acid. J Nanosci Nanotechnol 2015; 15: 4774-4783
  • 41 Tang X, Sun J, Ge T, Zhang K, Gui Q, Zhang S, Chen W. PEGylated liposomes as delivery systems for gambogenic acid: Characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2018; 172: 26-36
  • 42 Zhou S, Zhao N, Wang J. Gambogenic acid suppresses bladder cancer cells growth and metastasis by regulating NF-κB signaling. Chem Biol Drug Des 2020; 96: 1272-1279
  • 43 Wu J, Wang D, Zhou J, Li J, Xie R, Li Y, Huang J, Liu B, Qiu J. Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells. Phytother Res 2023; 37: 310-328
  • 44 Yan F, Wang M, Li J, Cheng H, Su J, Wang X, Wu H, Xia L, Li X, Chang HC, Li Q. Gambogenic acid induced mitochondrial-dependent apoptosis and referred to phospho-Erk1/2 and phospho-p 38 MAPK in human hepatoma HepG2 cells. Environ Toxicol Pharmacol 2012; 33: 181-190
  • 45 Wang M, Li S, Wang Y, Cheng H, Su J, Li Q. Gambogenic acid induces ferroptosis in melanoma cells undergoing epithelial-to-mesenchymal transition. Toxicol Appl Pharmacol 2020; 401: 115110
  • 46 Yan F, Wang M, Chen H, Su J, Wang X, Wang F, Xia L, Li Q. Gambogenic acid mediated apoptosis through the mitochondrial oxidative stress and inactivation of Akt signaling pathway in human nasopharyngeal carcinoma CNE-1 cells. Eur J Pharmacol 2011; 652: 23-32
  • 47 Chen HB, Zhou LZ, Mei L, Shi XJ, Wang XS, Li QL, Huang L. Gambogenic acid-induced time- and dose-dependent growth inhibition and apoptosis involving Akt pathway inactivation in U251 glioblastoma cells. J Nat Med 2012; 66: 62-69
  • 48 Liu Z, Wang X, Li J, Yang X, Huang J, Ji C, Li X, Li L, Zhou J, Hu Y. Gambogenic acid induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the P53 signaling pathway. Chem Biol Interact 2023; 382: 110602
  • 49 Han QB, Wang YL, Yang L, Tso TF, Qiao CF, Song JZ, Xu LJ, Chen SL, Yang DJ, Xu HX. Cytotoxic polyprenylated xanthones from the resin of Garcinia hanburyi . Chem Pharm Bull (Tokyo) 2006; 54: 265-267
  • 50 Yu XJ, Zhao Q, Wang XB, Zhang JX, Wang XB. Gambogenic acid induces proteasomal degradation of CIP2A and sensitizes hepatocellular carcinoma to anticancer agents. Oncol Rep 2016; 36: 3611-3618
  • 51 Su J, Cheng H, Zhang D, Wang M, Xie C, Hu Y, Chang HW, Li Q. Synergistic effects of 5-fluorouracil and gambogenic acid on A549 cells: Activation of cell death caused by apoptotic and necroptotic mechanisms via the ROS-mitochondria pathway. Biol Pharm Bull 2014; 37: 1259-1268
  • 52 Xu L, Meng X, Xu N, Fu W, Tan H, Zhang L, Zhou Q, Qian J, Tu S, Li X, Lao Y, Xu H. Gambogenic acid inhibits fibroblast growth factor receptor signaling pathway in erlotinib-resistant non-small-cell lung cancer and suppresses patient-derived xenograft growth. Cell Death Dis 2018; 9: 262
  • 53 Xu Q, Guo J, Chen W. Gambogenic acid reverses P-glycoprotein mediated multidrug resistance in HepG2/ADR cells and its underlying mechanism. Biochem Biophys Res Commun 2019; 508: 882-888
  • 54 He Y, Ding J, Lin Y, Li J, Shi Y, Wang J, Zhu Y, Wang K, Hu X. Gambogenic acid alters chemosensitivity of breast cancer cells to adriamycin. BMC Complement Altern Med 2015; 15: 181
  • 55 Wang B, Yuan T, Zha L, Liu Y, Chen W, Zhang C, Bao Y, Dong Q. Oral delivery of gambogenic acid by functional polydopamine nanoparticles for targeted tumor therapy. Mol Pharm 2021; 18: 1470-1479
  • 56 Okada S, Vaeteewoottacharn K, Kariya R. Application of highly immunocompromised mice for the establishment of Patient-Derived Xenograft (PDX) models. Cells 2019; 8: 889
  • 57 Liu C, Xu J, Guo C, Chen X, Qian C, Zhang X, Zhou P, Yang Y. Gambogenic acid induces endoplasmic reticulum stress in colorectal cancer via the aurora a pathway. Front Cell Dev Biol 2021; 9: 736350
  • 58 Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med 2016; 22: 128-134
  • 59 Huang J, Gou H, Yao J, Yi K, Jin Z, Matsuoka M, Zhao T. The noncanonical role of EZH2 in cancer. Cancer Sci 2021; 112: 1376-1382
  • 60 Zeng J, Zhang J, Sun Y, Wang J, Ren C, Banerjee S, Ouyang L, Wang Y. Targeting EZH2 for cancer therapy: From current progress to novel strategies. Eur J Med Chem 2022; 238: 114419
  • 61 Eich ML, Athar M, Ferguson JE, Varambally S. EZH2-targeted therapies in cancer: Hype or a reality. Cancer Res 2020; 80: 5449-5458
  • 62 Liu Y, Yang Q. The roles of EZH2 in cancer and its inhibitors. Med Oncol 2023; 40: 167
  • 63 Montalto FI, De Amicis F. Cyclin D1 in cancer: A molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells 2020; 9: 2648
  • 64 Shen D, Wang Y, Niu H, Liu C. Gambogenic acid exerts anticancer effects in cisplatin-resistant non-small cell lung cancer cells. Mol Med Rep 2020; 21: 1267-1275
  • 65 Luo Q, Lin T, Zhang CY, Zhu T, Wang L, Ji Z, Jia B, Ge T, Peng D, Chen W. A novel glyceryl monoolein-bearing cubosomes for gambogenic acid: Preparation, cytotoxicity and intracellular uptake. Int J Pharm 2015; 49: 30-39
  • 66 Lin TY, Zhu TT, Xun Y, Tao YS, Yang YQ, Xie JL, Zhang XM, Chen SX, Ding BJ, Chen WD. A novel drug delivery system of mixed micelles based on poly(ethylene glycol)-poly(lactide) and poly(ethylene glycol)-poly(ε-caprolactone) for gambogenic acid. Kaohsiung J Med Sci 2019; 35: 757-764
  • 67 Lin TY, Chang JL, Xun Y, Zhao Y, Peng W, Yang W, Ding BJ, Chen WD. Folic acid-modified nonionic surfactant vesicles for gambogenic acid targeting: Preparation, characterization, and in vitro and in vivo evaluation. Kaohsiung J Med Sci 2020; 36: 344-353
  • 68 Cheng H, Su JJ, Peng JY, Wang M, Wang XC, Yan FG, Wang XS, Li QL. Gambogenic acid inhibits proliferation of A549 cells through apoptosis inducing through up-regulation of the p 38 MAPK cascade. J Asian Nat Prod Res 2011; 13: 993-1002
  • 69 Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol 2021; 125: 73-120
  • 70 Wang M, Zhan F, Cheng H, Li Q. Gambogenic acid inhibits basal autophagy of drug-resistant hepatoma cells and improves its sensitivity to adriamycin. Biol Pharm Bull 2022; 45: 63-70
  • 71 Zeeshan HM, Lee GH, Kim HR, Chae HJ. Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 2016; 17: 327
  • 72 Su J, Xu T, Jiang G, Hou M, Liang M, Cheng H, Li Q. Gambogenic acid triggers apoptosis in human nasopharyngeal carcinoma CNE-2Z cells by activating volume-sensitive outwardly rectifying chloride channel. Fitoterapia 2019; 133: 150-158
  • 73 Wang M, Cheng H, Wu H, Liu C, Li S, Li B, Su J, Luo S, Li Q. Gambogenic acid antagonizes the expression and effects of long non-coding RNA NEAT1 and triggers autophagy and ferroptosis in melanoma. Biomed Pharmacother 2022; 154: 113636
  • 74 Mei W, Dong C, Hui C, Bin L, Fenggen Y, Jingjing S, Cheng P, Meiling S, Yawen H, Xiaoshan W, Guanghui W, Zhiwu C, Qinglin L. Gambogenic acid kills lung cancer cells through aberrant autophagy. PLoS One 2014; 9: e83604
  • 75 Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C. The role of necroptosis in cancer biology and therapy. Mol Cancer 2019; 18: 100
  • 76 Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W, Wang J. Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med 2019; 23: 4900-4912
  • 77 Ma X, Xu M, Zhang X, Wang X, Su K, Xu Z, Wang X, Yang Y. Gambogenic acid inhibits proliferation and ferroptosis by targeting the miR‐1291/FOXA2 and AMPKα/SLC7A11/GPX4 axis in colorectal cancer. Cell Biol Int 2023; 47: 1813-1824
  • 78 Wang X, Chen Y, Han QB, Chan CY, Wang H, Liu Z, Cheng CH, Yew DT, Lin MCM, He ML, Xu HX, Sung JYY, Kung HF. Proteomic identification of molecular targets of gambogic acid: Role of stathmin in hepatocellular carcinoma. Proteomics 2009; 9: 242-253
  • 79 Liu P, Wu X, Dai L, Ge Z, Gao C, Zhang H, Wang F, Zhang X, Chen B. Gambogenic acid exerts antitumor activity in hypoxic multiple myeloma cells by regulation of miR-21. J Cancer 2017; 8: 3278-3286
  • 80 Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol 2016; 65: 798-808
  • 81 Wang M, Tu Y, Liu C, Cheng H, Zhang M, Li Q. Gambogenic acid inhibits invasion and metastasis of melanoma through regulation of lncRNA MEG3. Biol Pharm Bull 2023; 46: 1385-1393
  • 82 Hua X, Liang C, Dong L, Qu X, Zhao T. Simultaneous determination and pharmacokinetic study of gambogic acid and gambogenic acid in rat plasma after oral administration of Garcinia hanburyi extracts by LC-MS/MS. Biomed Chromatogr 2015; 29: 545-551
  • 83 Chen JP, Wang DL, Yang LL, Wang CY, Wang SS. Ultra-high-performance liquid chromatography tandem mass spectrometry method for the determination of gambogenic acid in dog plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2014; 28: 1854-1859
  • 84 Pan LY, Wang YS, Liu XH, Wang N, Xu W, Xiu YF. Pharmacokinetic comparison of five xanthones in rat plasma after oral administration of crude and processed Garcinia hanburyi extracts. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126 – 1127: 121737
  • 85 Pan L, Xu M, Wang N, Jia Y, Xiu Y. Determination and tissue distribution comparisons of five xanthones after orally administering crude and processed gamboge. Biomed Chromatogr 2023; 37: e5516
  • 86 Sun J, Tang X, Xu Q, Ge T, Peng D, Chen W. Effect of gambogenic acid on cytochrome P450 1A2, 2B1 and 2E1, and constitutive androstane receptor in rats. Eur J Drug Metab Pharmacokinet 2018; 43: 655-664
  • 87 Sun J, Pang M, Tang X, Xu Q, Peng D, Chen W. Antitumor effect of gambogenic acid and its effect on CYP2C and CYP3A after oral administration. Chem Pharm Bull (Tokyo) 2023; 71: 334-341
  • 88 Huang X, Chen YJ, Peng DY, Li QL, Wang XS, Wang DL, Chen WD. Solid lipid nanoparticles as delivery systems for gambogenic acid. Colloids Surf B Biointerfaces 2013; 102: 391-397
  • 89 Lin T, Huang X, Wang Y, Zhu T, Luo Q, Wang X, Zhou K, Cheng H, Peng D, Chen W. Long circulation nanostructured lipid carriers for gambogenic acid: Formulation design, characterization, and pharmacokinetic. Xenobiotica 2017; 47: 793-799
  • 90 Wang F, Ye X, Wu Y, Wang H, Sheng C, Peng D, Chen W. Time interval of two injections and first-dose dependent of accelerated blood clearance phenomenon induced by PEGylated liposomal gambogenic acid: The contribution of PEG-specific IgM. J Pharm Sci 2019; 108: 641-651
  • 91 Lin T, Fang Q, Peng D, Huang X, Zhu T, Luo Q, Zhou K, Chen W. PEGylated non-ionic surfactant vesicles as drug delivery systems for gambogenic acid. Drug Deliv 2013; 20: 277-284
  • 92 Cheng W, Wang B, Zhang C, Dong Q, Qian J, Zha L, Chen W, Hong L. Preparation and preliminary pharmacokinetics study of GNA-loaded zein nanoparticles. J Pharm Pharmacol 2019; 71: 1626-1634
  • 93 Yuan H, Li X, Zhang C, Pan W, Liang Y, Chen Y, Chen W, Liu L, Wang X. Nanosuspensions as delivery system for gambogenic acid: Characterization and in vitro/in vivo evaluation. Drug Deliv 2016; 23: 2772-2779
  • 94 Zha L, Qian J, Wang B, Liu H, Zhang C, Dong Q, Chen W, Hong L. In vitro/in vivo evaluation of pH-sensitive gambogenic acid loaded zein nanoparticles with polydopamine coating. Int J Pharm 2020; 587: 119665
  • 95 Liu H, Chen H, Cao F, Peng D, Chen W, Zhang C. Amphiphilic block copolymer poly (Acrylic Acid)-B-polycaprolactone as a novel pH-sensitive nanocarrier for anticancer drugs delivery: In-vitro and in-vivo evaluation. Polymers (Basel) 2019; 11: 820
  • 96 Wang B, Cheng W, Zhang C, Bao Y, Zha L, Qian J, Hong L, Chen W. Self-assembled micelles based on gambogenic acid-phospholipid complex for sustained-release drug delivery. J Microencapsul 2019; 36: 566-575
  • 97 Yu Q, Zhang B, Zhou Y, Ge Q, Jiali C, Chen Y, Zhang K, Peng D, Chen W. Co-delivery of gambogenic acid and VEGF-siRNA with anionic liposome and polyethylenimine complexes to HepG2 cells. J Liposome Res 2019; 29: 322-331
  • 98 Du M, Geng T, Yu R, Song G, Cheng H, Cao Y, He W, Haleem A, Li Q, Hu R, Chen S. Smart anti-vascular nanoagent induces positive feedback loop for self-augmented tumor accumulation. J Control Release 2023; 356: 595-609
  • 99 Pesonen L, Svartsjö S, Bäck V, de Thonel A, Mezger V, Sabéran-Djoneidi D, Roos-Mattjus P. Gambogic acid and gambogenic acid induce a thiol-dependent heat shock response and disrupt the interaction between HSP90 and HSF1 or HSF2. Cell Stress Chaperones 2021; 26: 819-833