Skip to main content
Log in

Integral representations for the double-diffusivity system on the half-line

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A novel method is presented for explicitly solving inhomogeneous initial-boundary-value problems (IBVPs) on the half-line for a well-known coupled system of evolution partial differential equations. The so-called double-diffusion model, which is based on a simple, yet general, inhomogeneous diffusion configuration, describes accurately several important physical and mechanical processes and thus emerges in miscellaneous applications, ranging from materials science, heat-mass transport and solid–fluid dynamics, to petroleum and chemical engineering. For instance, it appears in nanotechnology and its inhomogeneous version has recently appeared in the area of lithium-ion rechargeable batteries. Our approach is based on the extension of the unified transform (also called the Fokas method), so that it can be applied to systems of coupled equations. First, we derive formally effective solution representations and then justify a posteriori their validity rigorously. This includes the reconstruction of the prescribed initial and boundary conditions, which requires careful analysis of the various integral terms appearing in the formulae, proving that they converge in a strictly defined sense. The novel solution formulae are also utilized to rigorously deduce the solution’s regularity properties near the boundaries of the spatiotemporal domain. In particular, we prove uniform convergence of the solution to the data, its rapid decay at infinity as well as its smoothness up to (and beyond) the boundary axes, provided certain data compatibility conditions at the quarter-plane corner are satisfied. As a sample of important applications of our analysis and investigation of the boundary behavior of the solution and its derivatives, we both prove a novel uniqueness theorem and construct a ‘non-uniqueness counterexample’. These supplement the preceding ‘constructive existence’ result, within the framework of well-posedness. Moreover, one of the advantages of the unified transform is that it yields representations which are defined on contours in the complex Fourier \(\lambda \)-plane, which exhibit exponential decay for large values of \(\lambda \). This important characteristic of the solutions is expected to allow for an efficient numerical evaluation; this is envisaged in future numerical-analytic investigations. The new formulae and the findings reported herein are also expected to find utility in the study of questions pertaining to well-posedness for nonlinear counterparts too. In addition, our rigorous approach can be extended to IBVPs for other significant models of mathematical physics and potentially also to higher-dimensional and variable-coefficient cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Konstantinidis, D.A., Eleftheriadis, I.E., Aifantis, E.C.: On the experimental validation of the double diffusivity model. Scr. Mater. 38, 573–580 (1998)

    Google Scholar 

  2. Konstantinidis, D.A., Eleftheriadis, I.E., Aifantis, E.C.: Application of double diffusivity model to superconductors. J. Mater. Process. Technol. 108, 185–187 (2001)

    Google Scholar 

  3. Konstantinidis, D.A., Aifantis, E.C.: Further experimental evidence of the double diffusivity model. Scr. Mater. 40, 1235–1241 (1999)

    Google Scholar 

  4. Aifantis, E.C., Hill, J.M.: On the theory of diffusion in media with double diffusivity I—basic mathematical results. Q. J. Mech. Appl. Math. 33, 1–21 (1980)

    MathSciNet  Google Scholar 

  5. Hill, J.M., Aifantis, E.C.: On the theory of diffusion in media with double diffusivity II—boundary value problems. Q. J. Mech. Appl. Math. 33, 23–41 (1980)

    MathSciNet  Google Scholar 

  6. Aifantis, E.C.: A new interpretation of diffusion in high diffusivity paths—a continuum approach. Acta Metall. 27, 683–691 (1979)

    Google Scholar 

  7. Heaviside, O.: On the extra current. Philos. Mag. Ser. 5, 135 (1876)

    Google Scholar 

  8. Barenblatt, G.I., Zheltov, Y.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Google Scholar 

  10. Rubenstein, L.I.: On the problem of the process of propagation of heat in heterogeneousmedia. Izv. Akad. Nauk SSSR Ser. Geogr. 1, 12–45 (1948)

    Google Scholar 

  11. Ter Haar, D. (ed.): Collected papers of L.D. Landau. Pergamon, London (1965)

    Google Scholar 

  12. Lappas, K.I.T., Konstantinidis, A.A., Aifantis, E.C.: Modelling triple diffusion of 63Ni in UFG Cu–Zr ingots. Scr. Mater. 201, 113980 (2021)

    Google Scholar 

  13. Aifantis, K.E., Hackney, S.A., Kumar, V.R. (eds.): High Energy Density Lithium Batteries: Materials, Engineering, Applications. Wiley, Weinheim (2010). (Translated in Chinese: China Machine Press, ISBN: 9787111371786 (2011))

    Google Scholar 

  14. Aifantis, E.C.: Internal length gradient (ILG) material mechanics across scales & disciplines. Adv. Appl. Mech. 49, 1–110 (2016)

    Google Scholar 

  15. Aris, R.: On the permeability of membranes with parallel, but interconnected, pathways. Math. Biosci. 77, 5 (1985)

    MathSciNet  Google Scholar 

  16. https://en.wikipedia.org/wiki/Fokas_method

  17. Fokas, A.S.: Lax Pairs: a novel type of separability (invited paper for the special volume of the 25th anniversary of Inverse Problems). Inverse Probl. 25, 1–44 (2009)

    Google Scholar 

  18. Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. Ser. A 453, 1411–1443 (1997)

    MathSciNet  Google Scholar 

  19. Fokas, A.S.: On the integrability of linear and nonlinear PDEs. J. Math. Phys. 41, 4188–4237 (2000)

    MathSciNet  Google Scholar 

  20. Fokas, A.S., Kaxiras, E.: Modern Mathematical Methods for Computational Sciences and Engineering. World Scientific, Singapore (2022)

    Google Scholar 

  21. Fokas, A.S., Pelloni, B.: The solution of certain IBV problems for the linearized KdV equation. Proc. R. Soc. Lond. A 454, 645–657 (1998)

    Google Scholar 

  22. Fokas, A.S., Pelloni, B.: A method of solving moving boundary value problems for linear evolution equations. Phys. Rev. Lett. 84, 4785–4789 (2000)

    MathSciNet  Google Scholar 

  23. Fokas, A.S.: A new transform method for evolution PDEs. IMA J. Appl. Math. 67, 1–32 (2002)

    MathSciNet  Google Scholar 

  24. Fokas, A.S., Papageorgiou, D.T.: Absolute and convective instability for evolution PDEs on the half-line. Stud. Appl. Math. 114, 95–114 (2005)

    MathSciNet  Google Scholar 

  25. Fokas, A.S., Wang, Z.: Generalised Dirichlet to Neumann maps for linear dispersive equations on half-Line. Math. Proc. Camb. Philos. Soc. 164, 297–324 (2018)

    MathSciNet  Google Scholar 

  26. Fokas, A.S., Pelloni, B.: Two-point boundary value problems for linear evolution equations. Math. Proc. Camb. Philos. Soc. 131, 521–543 (2001)

    MathSciNet  Google Scholar 

  27. Fokas, A.S., Pelloni, B.: A transform method for evolution PDEs on the interval. IMA J. Appl. Math. 75, 564–587 (2005)

    MathSciNet  Google Scholar 

  28. De Lillo, S., Fokas, A.S.: The Dirichlet to Neumann map for the heat equation on a moving boundary. Inverse Probl. 23, 1699–1710 (2007)

    MathSciNet  Google Scholar 

  29. Fokas, A.S., Pelloni, B.: Generalized Dirichlet-to-Neumann map in time-dependent domains. Stud. Appl. Math. 129, 51–90 (2012)

    MathSciNet  Google Scholar 

  30. Fernandez, A., Baleanu, D., Fokas, A.S.: Solving PDEs of fractional order using the Unified Transform Method. Appl. Math. Comput. 339, 738–749 (2018)

    MathSciNet  Google Scholar 

  31. Mantzavinos, D., Fokas, A.S.: The Unified Method for the heat equation: I. Non-separable boundary conditions and non-local constraints in one dimension. Eur. J. Appl. Math. 24, 857–886 (2013)

    MathSciNet  Google Scholar 

  32. Batal, A., Fokas, A.S., Ozsari, T.: Fokas method for linear boundary value problems involving mixed spatial derivatives. Proc. R. Soc. A 476, 20200076 (2020)

    MathSciNet  Google Scholar 

  33. Miller, P.D., Smith, D.A.: The diffusion equation with nonlocal data. J. Math. Anal. Appl. 466, 1119–1143 (2018)

    MathSciNet  Google Scholar 

  34. Deconinck, B., Pelloni, B., Sheils, N.E.: Non-steady-state heat conduction in composite walls. Proc. R. Soc. A: Math. Phys. Eng. Sci. 470, 20130605 (2014)

    Google Scholar 

  35. Sheils, N.E., Deconinck, B.: Interface problems for dispersive equations. Stud. Appl. Math. 134, 253–275 (2015)

    MathSciNet  Google Scholar 

  36. Sheils, N.E., Deconinck, B.: Heat conduction on the ring: Interface problems with periodic boundary conditions. Appl. Math. Lett. 37, 107–111 (2014)

    MathSciNet  Google Scholar 

  37. Sheils, N.E., Deconinck, B.: Initial-to-interface maps for the heat equation on composite domains. Stud. Appl. Math. 137, 140–154 (2016)

    MathSciNet  Google Scholar 

  38. Sheils, N.E., Deconinck, B.: The time-dependent Schrödinger equation with piecewise constant potentials. Eur. J. Appl. Math. 31, 57–83 (2020)

    Google Scholar 

  39. Deconinck, B., Sheils, N.E., Smith, D.A.: The linear KdV equation with an interface. Commun. Math. Phys. 347, 489–509 (2016)

    MathSciNet  Google Scholar 

  40. Bona, J.L., Fokas, A.S.: Initial-boundary-value problems for linear and integrable nonlinear dispersive partial differential equations. Nonlinearity 21, T195–T203 (2008)

    MathSciNet  Google Scholar 

  41. Fokas, A.S., van der Weele, M.C.: The Unified Transform for time-periodic boundary conditions. Stud. Appl. Math. 147, 1339–1368 (2021)

    MathSciNet  Google Scholar 

  42. Fokas, A.S., Pelloni, B., Smith, D.A.: Time-periodic linear boundary value problems on a finite interval. Q. Appl. Math. 80 (2022)

  43. Fokas, A.S.: Boundary-value problems for linear PDEs with variable coefficients. Proc. R. Soc. Lond. A 460, 1131–1151 (2004)

    MathSciNet  Google Scholar 

  44. Farkas, M., Deconinck, B.: Solving the heat equation with variable thermal conductivity. Appl. Math. Lett. 135, 108395 (2023)

    MathSciNet  Google Scholar 

  45. Chatziafratis, A.: Rigorous Analysis of the Fokas Method for Linear Evolution PDEs on the Half-space, Thesis (in Greek), Advisors: N.D. Alikakos, G. Barbatis, I.G. Stratis, National and Kapodistrian University of Athens (2019). https://pergamos.lib.uoa.gr/uoa/dl/object/2877222

  46. Chatziafratis, A., Kamvissis, S., Stratis, I.G.: Boundary behavior of the solution to the linear KdV equation on the half-line. Stud. Appl. Math. 150, 339–379 (2023)

    MathSciNet  Google Scholar 

  47. Chatziafratis, A., Mantzavinos, D.: Boundary behavior for the heat equation on the half-line. Math. Methods Appl. Sci. 45, 7364–7393 (2022). https://doi.org/10.48550/arXiv.2401.08331

    Article  MathSciNet  Google Scholar 

  48. Fokas, A.S., Pelloni, B.: Boundary value problems for Boussinesq type systems. Math. Phys. Anal. Geom. 8, 59–96 (2005)

    MathSciNet  Google Scholar 

  49. Himonas, A.A., Mantzavinos, D.: On the initial-boundary value problem for the linearized Boussinesq equation. Stud. Appl. Math. 134, 62–100 (2014)

    MathSciNet  Google Scholar 

  50. Mantzavinos, D., Mitsotakis, D.: Extended water wave systems of Boussinesq equations on a finite interval: theory and numerical analysis. J. Math. Pures Appl. 169, 109–137 (2022)

    MathSciNet  Google Scholar 

  51. Deconinck, B., Guo, Q., Shlizerman, E., Vasan, V.: Fokas’s unified transform method for linear systems. Q. Appl. Math. 76, 463–488 (2018)

    MathSciNet  Google Scholar 

  52. Pelloni, B., Smith, D.A.: Spectral theory of some non-selfadjoint linear differential operators. Proc. R. Soc. A 469, 20130019 (2013)

    MathSciNet  Google Scholar 

  53. Fokas, A.S., Smith, D.A.: Evolution PDEs and augmented eigenfunctions. Finite interval. Adv. Differ. Equ. 21, 735–766 (2016)

    MathSciNet  Google Scholar 

  54. Pelloni, B., Smith, D.A.: Evolution PDEs and augmented eigenfunctions. Half line. J. Spectr. Theory 6, 185–213 (2016)

    MathSciNet  Google Scholar 

  55. Smith, D.A.: The unified transform method for linear initial-boundary value problems: a spectral interpretation. In: Fokas, A.S., Pelloni, B. (eds.) Unified Transform Method for Boundary Value Problems: Applications and Advances. SIAM, Philadelphia (2015)

    Google Scholar 

  56. Aitzhan, S., Bhandari, S., Smith, D.A.: Fokas diagonalization of piecewise constant coefficient linear differential operators on finite intervals and networks. Acta Appl. Math. 177, 1–69 (2022)

    MathSciNet  Google Scholar 

  57. Chatziafratis, A., Grafakos, L., Kamvissis, S.: Long-range instabilities for linear evolution PDE on semi-bounded domains via the Fokas method. Dyn PDE (to appear)

  58. Chatziafratis, A., Grafakos, L., Kamvissis, S., Stratis, I.G.: Instabilities for linear evolution PDE on the half-line via the Fokas method. In: Bountis, T., et al. (eds.) Proceedings of Conference on “Dynamical Systems and Complexity” (Crete, 2022), in Vol. on “Chaos, Fractals and Complexity”. Springer, Berlin (2023). https://link.springer.com/chapter/10.1007/978-3-031-37404-3_20

  59. Chatziafratis, A., Ozawa, T., Tian, S.-F.: Rigorous analysis of the unified transform method and long-range instability for the inhomogeneous time-dependent Schrödinger equation on the quarter-plane. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02698-4

    Article  Google Scholar 

  60. Chatziafratis, A., Bona, J.L., Chen, H., Kamvissis, S.: New phenomena for the BBM equation in the quarter-plane. Preprint (2023)

  61. Chatziafratis, A., Ozawa, T.: Asymptotic analysis for a Sobolev-type evolution equation in the quarter-plane. Preprint (2023)

  62. Chatziafratis, A., Kamvissis, S.: A note on uniqueness for linear evolution PDEs posed on the quarter-plane. Preprint (2023) https://doi.org/10.48550/arXiv.2401.08531

  63. Himonas, A.A., Yan, F.: The modified KdV system on the half-line. J. Dyn. Differ. Equ. 333, 55–102 (2023)

    Google Scholar 

  64. Alexandrou Himonas, A., Mantzavinos, D.: Well-posedness of the nonlinear Schrödinger equation on the half-plane. Nonlinearity 33, 5567–5609 (2020)

    MathSciNet  Google Scholar 

  65. Alexandrou Himonas, A., Mantzavinos, D., Yan, F.: The Korteweg-de Vries equation on an interval. J. Math. Phys. 60, 1–26 (2019)

    MathSciNet  Google Scholar 

  66. Alexandrou Himonas, A., Mantzavinos, D., Yan, F.: The nonlinear Schrödinger equation on the half-line with Neumann boundary conditions. Appl. Numer. Math. 141, 2–18 (2019)

    MathSciNet  Google Scholar 

  67. Fokas, A.S., Alexandrou Himonas, A., Mantzavinos, D.: The nonlinear Schrödinger equation on the half-line. Trans. Am. Math. Soc. 369, 681–709 (2017)

    Google Scholar 

  68. Kalimeris, K., Özsarı, T.: An elementary proof of the lack of null controllability for the heat equation on the half line. Appl. Math. Lett. 104, 106241 (2020)

    MathSciNet  Google Scholar 

  69. Kalimeris, K., Özsarı, T., Dikaios, N.: Numerical computation of Neumann controls for the heat equation on a finite interval. IEEE Trans. Autom. Control 69, 1–13 (2024)

    MathSciNet  Google Scholar 

  70. Chatziafratis, A., Fokas, A.S., Aifantis, E.C.: On Barenblatt’s pseudoparabolic equation with forcing on the half-line via the Fokas method. Z Angew Math Mech (2024). https://doi.org/10.1002/zamm.202300614

    Article  Google Scholar 

  71. Chatziafratis, A., Aifantis, E.C., Fokas, A.S., Miranville, A.: Variations on heat equation: fourth-order diffusion and Cahn–Hilliard models on the half-line revisited. Preprint (2023)

  72. Flyer, N., Fokas, A.S.: A hybrid analytical-numerical method for solving evolution partial differential equations. I. The half-line. Proc. R. Soc. A. 464, 1823–1849 (2008)

    MathSciNet  Google Scholar 

  73. Sifalakis, A.G., Fokas, A.S., Fulton, S.R., Saridakis, Y.G.: The generalized Dirichlet to Neumann map for linear elliptic PDEs and its numerical implementation. Comput. Appl. Math. 219, 9–34 (2008)

    MathSciNet  Google Scholar 

  74. Fokas, A.S., Spence, E.A.: Novel analytical and numerical methods for elliptic boundary value problems. In: Engquist, B., Fokas, A., Hairer, E., Iserles, A. (eds.) Highly Oscillatory Problems, London Mathematical Society Lecture Note Series, vol. 366. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  75. Smitheman, S.A., Spence, E.A., Fokas, A.S.: A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon. IMA J. Numer. Anal. 30, 1184–1205 (2010)

    MathSciNet  Google Scholar 

  76. Fornberg, B., Flyer, N.: A numerical implementation of Fokas boundary integral approach: Laplace’s equation on a polygonal domain. Proc. R. Soc. Lond. A 467, 2983–3003 (2011)

    MathSciNet  Google Scholar 

  77. Hashemzadeh, P., Fokas, A.S., Smitheman, S.A.: A numerical technique for linear elliptic partial differential equations in polygonal domains. Proc. R. Soc. Lond. A 471, 1–13 (2015)

    MathSciNet  Google Scholar 

  78. Ashton, A.C.L., Crooks, K.M.: Numerical analysis of Fokas’ unified method for linear elliptic PDEs. Appl. Numer. Math. 104, 120–132 (2016)

    MathSciNet  Google Scholar 

  79. Kesici, E., Pelloni, B., Pryer, T., Smith, D.A.: A numerical implementation of the unified Fokas transform for evolution problems on a finite interval. Eur. J. Appl. Math. 29(3), 543–567 (2018)

    MathSciNet  Google Scholar 

  80. de Barros, F.P.J., Colbrook, M.J., Fokas, A.S.: A hybrid analytical-numerical method for solving advection-dispersion problems on a half-line. Int. J. Heat Mass Trans. 139, 482–491 (2019)

    Google Scholar 

Download references

Acknowledgements

Tony Carbery was partially supported by a Leverhulme Fellowship. Andreas Chatziafratis’ research was partially funded, at different stages of this project, through a Grant awarded by the Academy of Athens, a Scholarship from the Onassis Foundation and a Fellowship from the Leventis Foundation; he wishes to acknowledge the Riemann International School of Mathematics (RISM) as well as the Johann Radon Institute for Computational and Applied Mathematics (RICAM) of the Austrian Academy of Sciences, where parts of this work were completed, for travel grants and for kind hospitality, and gratefully also thanks Professors: N.D. Alikakos, C. Dafermos, B. Deconinck, T. Hatziafratis, A.A. Himonas, S. Kamvissis, A. Katsevich, T. Ozawa, I.G. Stratis and N. Stylianopoulos for providing inspiration, encouragement and academic support altogether. We thank the anonymous referees for useful suggestions and stimulating comments which led to an improved version of the paper.

Funding

Leverhulme Trust (for A. Carbery) and Academy of Athens (for A. Chatziafratis).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Andreas Chatziafratis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatziafratis, A., Aifantis, E.C., Carbery, A. et al. Integral representations for the double-diffusivity system on the half-line. Z. Angew. Math. Phys. 75, 54 (2024). https://doi.org/10.1007/s00033-023-02174-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02174-8

Keywords

Mathematics Subject Classification

Navigation