Skip to main content
Log in

Ionic Electroactive Actuators and Sensors with Hybrid Polymer-Metal Electrodes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Ionic electroactive polymers are considered as electromechanical and mechanoelectrical transducers - actuators and sensors. Transducers with metal (Pt), polymer (PEDOT), and polymer-metal (PEDOT/Pt) hybrid electrodes are prepared. The surface morphology and internal structures of the samples are studied. The measurements of practically important actuation characteristics show that the advantages of transducers with earlier types of electrodes are inherited by those with hybrid electrodes: longer continuous operation in air characteristic of polymer electrodes and higher amplitude and force properties characteristic of metal ones. In the study of the transducer with PEDOT/Pt-electrodes in the sensor mode, the most stable response is obtained when Pt is deposited on the PEDOT external surface in two stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

REFERENCES

  1. E. Palomares, A. J. Nieto, A. L. Morales, J. M. Chicharro, and P. Pintado. Dynamic behaviour of pneumatic linear actuators. Mechatronics, 2017, 45, 37-48. https://doi.org/10.1016/j.mechatronics.2017.05.007

    Article  Google Scholar 

  2. D. Gong, R. He, J. Yu, and G. Zuo. A pneumatic tactile sensor for co-operative robots. Sensors, 2017, 17(11), 2592. https://doi.org/10.3390/s17112592

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. D. D. Shin, K. P. Mohanchandra, and G. P. Carman. Development of hydraulic linear actuator using thin film SMA. Sens. Actuators, A, 2005, 119(1), 151-156. https://doi.org/10.1016/j.sna.2004.01.025

    Article  CAS  Google Scholar 

  4. D. Heise and M. Skubic. Monitoring pulse and respiration with a non-invasive hydraulic bed sensor. In: Proceedings: 2010 Annual Int. Conf. of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, Aug 31-Sept 4, 2010. New York, USA: IEEE, 2010, 2119-2123. https://doi.org/10.1109/iembs.2010.5627219

    Book  Google Scholar 

  5. X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, and S. Dong. Piezoelectric actuators and motors: Materials, designs, and applications. Adv. Mater. Technol., 2020, 5(1), 1900716. https://doi.org/10.1002/admt.201900716

    Article  Google Scholar 

  6. T. H. Ng and W. H. Liao. Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor. J. Intell. Mater. Syst. Struct., 2005, 16(10), 785-797. https://doi.org/10.1177/1045389x05053151

    Article  Google Scholar 

  7. Y. Bar-Cohen and Q. Zhang. Electroactive polymer actuators and sensors. MRS Bull., 2008, 33(3), 173-181. https://doi.org/10.1557/mrs2008.42

    Article  CAS  Google Scholar 

  8. S. Guo, L. Shi, and K. Asaka. IPMC actuator-based an underwater microrobot with 8 legs. In: Proceedings: 2008 IEEE Int. Conf. on Mechatronics and Automation, Takamatsu, Japan, Aug 5-8, 2008. New York, USA: IEEE, 2008, 551-556. https://doi.org/10.1109/icma.2008.4798816

    Book  Google Scholar 

  9. L. Shi, S. Guo, M. Li, S. Mao, N. Xiao, B. Gao, Z. Song, and K. Asaka. A novel soft biomimetic microrobot with two motion attitudes. Sensors, 2012, 12(12), 16732-16758. https://doi.org/10.3390/s121216732

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. V. E. Kalyonov, Y. D. Orekhov, I. K. Khmelnitskiy, N. I. Alekseev, A. P. Broyko, A. V. Lagosh, D. O. Testov, and A. D. Shpakovsky. Walking robot with propulsors based on IPMC actuators. In: Proceedings: 2019 IEEE Int. Conf. on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, Oct 17-18, 2019. New York, USA: IEEE, 2019, 169-172. https://doi.org/10.1109/eexpolytech.2019.8906873

    Book  Google Scholar 

  11. K. C. Aw, W. Yu, A. J. McDaid, and S. Q. Xie. An IPMC driven micropump with adaptive on-line iterative feedback tuning. In: Proc. SPIE, Vol. 8409: Third Int. Conf. on Smart Materials and Nanotechnology in Engineering, Shenzhen, China, Nov 11-13, 2011 / Eds. J. Leng, Y. Bar-Cohen, I. Lee, and J. Lu. Bellingham, WA, USA: SPIE, 2012, 151-156. https://doi.org/10.1117/12.914430

    Book  Google Scholar 

  12. V. E. Kalyonov, Y. D. Orekhov, A. N. Shahabdin, A. P. Broyko, and D. O. Testov. Valveless microfluidic pump based on IPMC actuator for drug delivery. In: Proceedings: 2020 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia, Jan 27-30, 2020. New York, USA: IEEE, 2020, 1531-1534. https://doi.org/10.1109/eiconrus49466.2020.9039419

    Book  Google Scholar 

  13. S. E. Parfenovich, I. K. Khmelnitskiy, V. M. Aivazyan, K. G. Gareev, A. M. Karelin, A. V. Korlyakov, Y. D. Orekhov, D. O. Testov, and O. A. Testov. Micropump based on IPMC actuator: Design, simulation and study. In: Proceedings: 2022 Int. Conf. on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, Oct 20-21, 2022. New York, USA: IEEE, 2022, 227-230. https://doi.org/10.1109/eexpolytech56308.2022.9950884

    Book  Google Scholar 

  14. U. Deole, R. Lumia, M. Shahinpoor, and M. Bermudez. Design and test of IPMC artificial muscle microgripper. J. Micro-Nano Mech., 2008, 4(3), 95-102. https://doi.org/10.1007/s12213-008-0004-z

    Article  Google Scholar 

  15. R. K. Jain, S. Datta, and S. Majumder. Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal. Mechatronics, 2013, 23(3), 381-394. https://doi.org/10.1016/j.mechatronics.2013.02.008

    Article  Google Scholar 

  16. H. R. Cheong, C. Y. Teo, P. L. Leow, K. C. Lai, and P. S. Chee. Wireless-powered electroactive soft microgripper. Smart Mater Struct., 2018, 27(5), 055014. https://doi.org/10.1088/1361-665x/aab866

    Article  ADS  CAS  Google Scholar 

  17. A. Keshavarzi, M. Shahinpoor, K. J. Kim, and J. W. Lantz. Blood pressure, pulse rate, and rhythm measurement using ionic polymer-metal composite sensors. In: Proc. SPIE, Vol. 3669: 1999 Symp. on Smart Structures and Materials, Newport Beach, CA, USA, March 1, 1999 / Ed. Y. Bar-Cohen. Bellingham, WA: SPIE, 1999, 369-376. https://doi.org/10.1117/12.349695

    Book  Google Scholar 

  18. R. Chattaraj, S. Bhaumik, S. Khan, and D. Chatterjee. Soft wearable ionic polymer sensors for palpatory pulse-rate extraction. Sens. Actuators, A, 2018, 270, 65-71. https://doi.org/10.1016/j.sna.2017.12.041

    Article  CAS  Google Scholar 

  19. K. I. Ostretsov, Y. D. Orekhov, I. K. Khmelnitskiy, V. M. Aivazyan, O. A. Testov, K. G. Gareev, D. O. Testov, A. M. Karelin, and V. S. Bagrets. Heart rate monitor based on IPMC sensor. In: Proceedings: 2021 Int. Conf. on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, Oct 14-15, 2021. New York, USA: IEEE, 2021, 139-142. https://doi.org/10.1109/eexpolytech53083.2021.9614697

    Book  Google Scholar 

  20. S. Bhattacharya, R. Das, R. Chakraborty, T. Dutta, A. Mondal, S. Sarkar, B. Bepari, and S. Bhaumik. IPMC based data glove for object identification. In: Proceedings: 2017 6th Int. Conf. on Informatics, Electronics and Vision & 2017 7th Int. Symp. in Computational Medical and Health Technology (ICIEV-ISCMHT), Himeji, Japan, Sept 1-3, 2017. New York, USA: IEEE, 2017. https://doi.org/10.1109/iciev.2017.8338576

    Book  Google Scholar 

  21. Y. Ming, Y. Yang, R. P. Fu, C. Lu, L. Zhao, Y. M. Hu, C. Li, Y. X. Wu, H. Liu, and W. Chen. IPMC sensor integrated smart glove for pulse diagnosis, braille recognition, and human–computer interaction. Adv. Mater. Technol., 2018, 3(12), 1800257. https://doi.org/10.1002/admt.201800257

    Article  Google Scholar 

  22. D. S. Adamovich, V. M. Aivazyan, I. K. Khmelnitskiy, A. M. Karelin, V. V. Luchinin, S. E. Parfenovich, and D. O. Testov. Sensor glove based on electroactive polymers with hybrid electrodes for remote control of the manipulator. In: Proceedings: 2022 Int. Conf. on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, Oct 20-21, 2022. New York, USA: IEEE, 2022, 272-275. https://doi.org/10.1109/eexpolytech56308.2022.9950866

    Book  Google Scholar 

  23. G. Di Pasquale, S. Graziani, A. Pollicino, and S. Strazzeri. A vortex-shedding flowmeter based on IPMCs. Smart Mater. Struct., 2016, 25(1), 015011. https://doi.org/10.1088/0964-1726/25/1/015011

    Article  CAS  Google Scholar 

  24. S. Graziani, C. Marino, S. Strazzeri, G. Di Pasquale, and A. Pollicino. Study of an ionic polymer-metal composite based flowmeter. In: Proceedings: 2016 IEEE Int. Instrumentation and Measurement Technology Conf., Taipei, Taiwan, May 23-26, 2016. New York, USA: IEEE, 2016. https://doi.org/10.1109/i2mtc.2016.7520380

    Book  Google Scholar 

  25. T. Stalbaum, S. Trabia, Q. Shen, and K. J. Kim. Fluid flow sensing with ionic polymer-metal composites. In: Proc. SPIE, Vol. 9798: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Las Vegas, NV, USA, March 20-24, 2016 / Eds. Y. Bar-Cohen and F. Vidal. Bellingham, WA: SPIE, 2016, 474-478. https://doi.org/10.1117/12.2220446

    Book  Google Scholar 

  26. T. Wang, M. Farajollahi, Y. S. Choi, I.-T. Lin, J. E. Marshall, N. M. Thompson, S. Kar-Narayan, J. D. W. Madden, and S. K. Smoukov. Electroactive polymers for sensing. Interface Focus, 2016, 6(4), 20160026. https://doi.org/10.1098/rsfs.2016.0026

    Article  PubMed  PubMed Central  Google Scholar 

  27. A. J. Duncan, D. J. Leo, and T. E. Long. Beyond Nafion: Charged macromolecules tailored for performance as ionic polymer transducers. Macromolecules, 2008, 41(21), 7765-7775. https://doi.org/10.1021/ma800956v

    Article  ADS  CAS  Google Scholar 

  28. N. I. Alekseev, V. V. Bagrets, A. P. Broyko, A. V. Korlyakov, V. E. Kalenov, V. V. Luchinin, E. N. Sevostyanov, D. O. Testov, and I. K. Khmelnitsky. Ionic polymer electroactive actuators based on the MF-4SK ion-exchange membrane. Part 1. Ionic polymer-metal composites. J. Struct. Chem., 2020, 61(4), 601-608. https://doi.org/10.1134/S0022476620040149

    Article  CAS  Google Scholar 

  29. N. I. Alekseev, V. S. Bagrets, A. P. Broyko, A. V. Korlyakov, V. V. Luchinin, V. E. Kalenov, E. N. Sevostyanov, and I. K. Khmelnitsky. Ionic polymer electroactive actuators based on the MF-4SK ion-exchange membrane. Part 2. Ionic polymer-graphene composites. J. Struct. Chem., 2020, 61(4), 609-616. https://doi.org/10.1134/S0022476620040150

    Article  CAS  Google Scholar 

  30. K. J. Kim and M. Shahinpoor. Synthesis of nanoscaled platinum particles (NSPP): their role in performance improvement of ionic polymer-metal composite (IPMC) artificial muscles. In: Proc. SPIE, Vol. 4329: SPIE′s 8th Annual Int. Symp. on Smart Structures and Materials, Newport Beach, CA, USA, March 4-8, 2001 / Ed. Y. Bar-Cohen. Bellingham, WA: SPIE, 2001, 189-198. https://doi.org/10.1117/12.432645

    Book  Google Scholar 

  31. G. Di Pasquale, L. Fortuna, S. Graziani, M. , D. Nicolosi, G. Sicurella, and E. Umana. All organic actuation and sensing devices. In: Proceedings: 2008 IEEE Instrumentation and Measurement Technology Conf., Victoria, BC, Canada, May 12-15, 2008. New York, USA: IEEE, 2008, 771-776. https://doi.org/10.1109/imtc.2008.4547141

    Book  Google Scholar 

  32. N. I. Alekseyev, I. K. Khmelnitskiy, V. M. Aivazyan, A. P. Broyko, A. V. Korlyakov, and V. V. Luchinin. Ionic EAP actuators with electrodes based on carbon nanomaterials. Polymers, 2021, 13(23), 4137. https://doi.org/10.3390/polym13234137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. K. J. Kim and M. Shahinpoor. Ionic polymer–metal composites: II. Manufacturing techniques. Smart Mater. Struct., 2003, 12(1), 65-79. https://doi.org/10.1088/0964-1726/12/1/308

    Article  ADS  CAS  Google Scholar 

  34. G. Di Pasquale, L. Fortuna, S. Graziani, M. , A. Pollicino, and E. Umana. A study on IP2C actuators using ethylene glycol or EmI-Tf as solvent. Smart Mater. Struct., 2011, 20(4), 045014. https://doi.org/10.1088/0964-1726/20/4/045014

    Article  ADS  CAS  Google Scholar 

  35. G. Di Pasquale, S. Graziani, F. G. Messina, A. Pollicino, R. Puglisi, and E. Umana. An investigation of the structure–property relationships in ionic polymer polymer composites (IP2Cs) manufactured by polymerization in situ of PEDOT/PSS on Nafion®117. Smart Mater. Struct., 2014, 23(3), 035018. https://doi.org/10.1088/0964-1726/23/3/035018

    Article  ADS  CAS  Google Scholar 

  36. A. Aabloo, V. De Luca, G. Di Pasquale, S. Graziani, C. Gugliuzzo, U. Johanson, C. Marino, A. Pollicino, and R. Puglisi. A new class of ionic electroactive polymers based on green synthesis. Sens. Actuators, A, 2016, 249, 32-44. https://doi.org/10.1016/j.sna.2016.08.009

    Article  CAS  Google Scholar 

  37. D. Guo, L. Wang, X. Wang, Y. Xiao, C. Wang, L. Chen, and Y. Ding. PEDOT coating enhanced electromechanical performances and prolonged stable working time of IPMC actuator. Sens. Actuators, B, 2020, 305, 127488. https://doi.org/10.1016/j.snb.2019.127488

    Article  CAS  Google Scholar 

  38. I. K. Khmelnitskiy, L. O. Vereshagina, V. E. Kalyonov, A. P. Broyko, A. V. Lagosh, V. V. Luchinin, and D. O. Testov. Improvement of manufacture technology and research of actuators based on ionic polymer–metal composites. J. Phys. Conf. Ser., 2017, 857(1), 012018. https://doi.org/10.1088/1742-6596/857/1/012018

    Article  CAS  Google Scholar 

  39. I. K. Khmelnitskiy, V. M. Aivazyan, N. I. Alekseev, A. P. Broyko, V.A. Golubkov, D. O. Testov, A. V. Lagosh, and V. E. Kalyonov. Producing and investigation of PEDOT films as electrodes of ionic electroactive actuators. JPhys. Conf. Ser., 2019, 1281(1), 012033. https://doi.org/10.1088/1742-6596/1281/1/012033

    Article  CAS  Google Scholar 

  40. D. S. Adamovich, V. M. Aivazyan, I. K. Khmelnitskiy, V. S. Bagrets, and S. E. Parfenovich. Hybrid PEDOT/Pt electrodes for ionic EAP actuators. In: Proceedings: 2022 Conf. of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, Russia, Jan 25-28, 2022. New York, USA: IEEE, 2022, 1002-1005. https://doi.org/10.1109/elconrus54750.2022.9755721

    Book  Google Scholar 

  41. A. P. Broyko, I. K. Khmelnitskiy, E. A. Ryndin, A. V. Korlyakov, N. I. Alekseyev, and V. M. Aivazyan. Multiphysics simulator for the IPMC actuator: Mathematical model, finite difference scheme, fast numerical algorithm, and verification. Micromachines, 2020, 11(12), 1119. https://doi.org/10.3390/mi11121119

    Article  PubMed  PubMed Central  Google Scholar 

  42. I. A. Stenina, P. A. Yurova, T. S. Titova, M. A. Polovkova, O. V. Korchagin, V. A. Bogdanovskaya, and A. B. Yaroslavtsev. The influence of poly(3,4-ethylenedioxythiophene) modification on the transport properties and fuel cell performance of Nafion-117 membranes. J. Appl. Polym. Sci., 2021, 138(27), 50644. https://doi.org/10.1002/app.50644

    Article  Google Scholar 

  43. I. K. Khmelnitskiy, V. M. Aivazyan, N. I. Alekseev, V. V. Luchinin, D. O. Testov, V. S. Bagrets, and A. A. Maximova. Influence of the electrolyte nature on the performance of ionic EAP sensors with metal and polymer electrodes. J. Struct. Chem., 2021, 62(12), 1826-1835. https://doi.org/10.1134/s0022476621120027

    Article  CAS  Google Scholar 

  44. Z. Zhu, T. Horiuchi, K. Kruusamäe, L. Chang, and K. Asaka. Influence of ambient humidity on the voltage response of ionic polymer-metal composite sensor. J. Phys. Chem. B, 2016, 120(12), 3215-3225. https://doi.org/10.1021/acs.jpcb.5b12634

    Article  CAS  PubMed  Google Scholar 

  45. V. E. Kalyonov, N. I. Alekseev, I. K. Khmelnitskiy, A. V. Lagosh, and A. P. Broyko. Free oscillation frequency of ipmc actuator as an indicator of its water content. In: Proceedings: 2019 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia, Jan 28-31, 2019. New York, USA: IEEE, 2019, 812-814. https://doi.org/10.1109/eiconrus.2019.8657003

    Book  Google Scholar 

Download references

Funding

The work was supported by grant No. 23-29-00847 of the Russian Science Foundation, https://rscf.ru/en/project/23-29-00847/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Khmelnitskiy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 121829.https://doi.org/10.26902/JSC_id121829

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aivazyan, V.M., Kholodkova, E.E., Khmelnitskiy, I.K. et al. Ionic Electroactive Actuators and Sensors with Hybrid Polymer-Metal Electrodes. J Struct Chem 65, 267–280 (2024). https://doi.org/10.1134/S0022476624020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020057

Keywords

Navigation