Skip to main content
Log in

Structural Features and Their Relation with Catalytic Properties of Bi2WO6/TiO2–N Composites Upon Photo-Oxidation of Benzene Vapors

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We consider the influence of the composition based on the nitrogen-doped titanium dioxide of a composite photocatalyst for hydrothermal synthesis on the structure adopted by the orthorhombic bismuth tungstate supported by titanium dioxide nanocrystallites. The structural features, composition, surface conditions, optical and electrochemical characteristics of the samples are studied by X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen porosimetry, UV-Vis spectroscopy of diffuse surface reflections and subsequent Tauc analysis, electrochemical recording of photocurrent characteristics, and by registering the Nyquist diagrams. Catalytic tests in the test reaction of benzene vapor oxidation on synthesized photocatalysts are conducted in a flow-type reactor at the initial benzene concentrations of 2 µmol/L, 5 µmol/L, 10 µmol/L and the temperature of 40 °C under ultraviolet and blue light from LED optical radiation sources. The photocatalytic activity of the samples is estimated by the stationary steady-state rate of CO2 (final product of benzene vapor oxidation) accumulation. Based on the obtained data, the structure of the phases in the synthesized catalysts are determined and the boundaries beyond which the formation of the bismuth tungstate phase proceeds with features that affect the structure of the resulting composite and its photocatalytic activity are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. M.-Z. Qin, W.-X. Fu, H. Guo, C.-G. Niu, D.-W. Huang, C. Liang, Y.-Y. Yang, H.-Y. Liu, N. Tang, and Q.-Q. Fan. 2D/2D heterojunction systems for the removal of organic pollutants: A review. Adv. Colloid Interface Sci., 2021, 297, 102540. https://doi.org/10.1016/j.cis.2021.102540

    Article  CAS  PubMed  Google Scholar 

  2. Parul, K. Kaur, R. Badru, P. P. Singh, and S. Kaushal. Photodegradation of organic pollutants using heterojunctions: A review. J. Environ. Chem. Eng., 2020, 8(2), 103666. https://doi.org/10.1016/j.jece.2020.103666

    Article  CAS  Google Scholar 

  3. A. S. Belousov, A. A. Parkhacheva, E. V. Suleimanov, and I. Shafiq. Potential of Bi2WO6-based heterojunction photocatalysts for environmental remediation. Mater. Today Chem., 2023, 32, 101633. https://doi.org/10.1016/j.mtchem.2023.101633

    Article  CAS  Google Scholar 

  4. Z. U. Rehman, M. Bilal, J. Hou, F. K. Butt, J. Ahmad, S. Ali, and A. Hussain. Photocatalytic CO2 reduction using TiO2-based photocatalysts and TiO2 Z-scheme heterojunction composites: A review. Molecules, 2022, 27(7), 2069. https://doi.org/10.3390/molecules27072069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. W. Zhang, H. He, H. Li, L. Duan, L. Zu, Y. Zhai, W. Li, L. Wang, H. Fu, and D. Zhao. Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater., 2021, 11(15). https://doi.org/10.1002/aenm.202003303

    Article  Google Scholar 

  6. K. Nakata and A. Fujishima. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C, 2012, 13(3), 169-189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  7. C. Sonne, C. Xia, P. Dadvand, A. C. Targino, and S. S. Lam. Indoor volatile and semi-volatile organic toxic compounds: Need for global action. J. Build. Eng., 2022, 62, 105344. https://doi.org/10.1016/j.jobe.2022.105344

    Article  Google Scholar 

  8. Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, and G. Xiao. BiVO4/TiO2 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal., B, 2011, 104(1/2), 30-36. https://doi.org/10.1016/j.apcatb.2011.02.031

    Article  CAS  Google Scholar 

  9. A. Bathla, K. Vikrant, D. Kukkar, and K.-H. Kim. Photocatalytic degradation of gaseous benzene using metal oxide nanocomposites. Adv. Colloid Interface Sci., 2022, 305, 102696. https://doi.org/10.1016/j.cis.2022.102696

    Article  CAS  PubMed  Google Scholar 

  10. Z. Shayegan, C.-S. Lee, and F. Haghighat. TiO2 photocatalyst for removal of volatile organic compounds in gas phase - A review. Chem. Eng. J., 2018, 334, 2408-2439. https://doi.org/10.1016/j.cej.2017.09.153

    Article  CAS  Google Scholar 

  11. K. Vikrant, C. M. Park, K.-H. Kim, S. Kumar, and E.-C. Jeon. Recent advancements in photocatalyst-based platforms for the destruction of gaseous benzene: Performance evaluation of different modes of photocatalytic operations and against adsorption techniques. J. Photochem. Photobiol., C, 2019, 41, 100316. https://doi.org/10.1016/j.jphotochemrev.2019.08.003

    Article  CAS  Google Scholar 

  12. H. Einaga. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst. Appl. Catal., B, 2002, 38(3), 215-225. https://doi.org/10.1016/s0926-3373(02)00056-5

    Article  CAS  Google Scholar 

  13. H. Einaga, S. Futamura, and T. Ibusuki. Photocatalytic decomposition of benzene over TiO2 in a humidified airstream. Phys. Chem. Chem. Phys., 1999, 1(20), 4903-4908. https://doi.org/10.1039/a906214i

    Article  CAS  Google Scholar 

  14. Ö. Kerkez-Kuyumcu, E. Kibar, K. Dayıoğlu, F. Gedik, A. N. Akın, and Ş. Özkara-Aydınoğlu. A comparative study for removal of different dyes over M/TiO2 (M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. J. Photochem. Photobiol., A, 2015, 311, 176-185. https://doi.org/10.1016/j.jphotochem.2015.05.037

    Article  CAS  Google Scholar 

  15. A. Kumar, M. Khan, J. He, and I. M. C. Lo. Recent developments and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: A critical review. Water Res., 2020, 170, 115356. https://doi.org/10.1016/j.watres.2019.115356

    Article  CAS  PubMed  Google Scholar 

  16. W. Fang, M. Xing, and J. Zhang. Modifications on reduced titanium dioxide photocatalysts: A review. J. Photochem. Photobiol., C, 2017, 32, 21-39. https://doi.org/10.1016/j.jphotochemrev.2017.05.003

    Article  CAS  Google Scholar 

  17. Y.-Y. Wang, Y.-X. Chen, T. Barakat, Y.-J. Zeng, J. Liu, S. Siffert, and B.-L. Su. Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting. J. Energy Chem., 2022, 66, 529-559. https://doi.org/10.1016/j.jechem.2021.08.038

    Article  CAS  Google Scholar 

  18. R. Li, T. Li, and Q. Zhou. Impact of titanium dioxide (TiO2) modification on its application to pollution treatment - A review. Catalysts, 2020, 10(7), 804. https://doi.org/10.3390/catal10070804

    Article  CAS  Google Scholar 

  19. N. Kaur, S. K. Shahi, J. S. Shahi, S. Sandhu, R. Sharma, and V. Singh. Comprehensive review and future perspectives of efficient N-doped, Fe-doped and (N,Fe)-co-doped titania as visible light active photocatalysts. Vacuum, 2020, 178, 109429. https://doi.org/10.1016/j.vacuum.2020.109429

    Article  ADS  CAS  Google Scholar 

  20. X. Chen, X. Wang, Y. Hou, J. Huang, L. Wu, and X. Fu. The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation. J. Catal., 2008, 255(1), 59-67. https://doi.org/10.1016/j.jcat.2008.01.025

    Article  CAS  Google Scholar 

  21. N. Kovalevskiy, D. Svintsitskiy, S. Cherepanova, S. Yakushkin, O. Martyanov, S. Selishcheva, E. Gribov, D. Kozlov, and D. Selishchev. Visible-light-active N-doped TiO2 photocatalysts: Synthesis from TiOSO4, characterization, and enhancement of stability via surface modification. Nanomaterials, 2022, 12(23), 4146. https://doi.org/10.3390/nano12234146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Kovalevskiy, S. Cherepanova, E. Gerasimov, M. Lyulyukin, M. Solovyeva, I. Prosvirin, D. Kozlov, and D. Selishchev. Enhanced photocatalytic activity and stability of Bi2WO6–TiO2–N nanocomposites in the oxidation of volatile pollutants. Nanomaterials, 2022, 12(3), 359. https://doi.org/10.3390/nano12030359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. T. M. Khedr, K. Wang, D. Kowalski, S. M. El-Sheikh, H. M. Abdeldayem, B. Ohtani, and E. Kowalska. Bi2WO6-based Z-scheme photocatalysts: Principles, mechanisms and photocatalytic applications. J. Environ. Chem. Eng., 2022, 10(3), 107838. https://doi.org/10.1016/j.jece.2022.107838

    Article  CAS  Google Scholar 

  24. R. Patra, P. Dash, P. K. Panda, and P.-C. Yang. A breakthrough in photocatalytic wastewater treatment: The incredible potential of g-C3N4/titanate perovskite-based nanocomposites. Nanomaterials, 2023, 13(15), 2173. https://doi.org/10.3390/nano13152173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. K. Li, H. Wang, J. Li, and F. Dong. Design and mechanism of photocatalytic oxidation for the removal of air pollutants: A review. Environ. Chem. Lett., 2022, 20(4), 2687-2708. https://doi.org/10.1007/s10311-022-01436-7

    Article  CAS  Google Scholar 

  26. Z. Zhao, H. Wang, C. Wang, Y. Sun, H. Han, J. Kang, Y. Dong, and L. Wang. Surface acidification of BiOI/TiO2 composite enhanced efficient photocatalytic degradation of benzene. Separations, 2022, 9(10), 315. https://doi.org/10.3390/separations9100315

    Article  CAS  Google Scholar 

  27. C. Ren, W. Qiu, H. Zhang, Z. He, and Y. Chen. Degradation of benzene on TiO2/SiO2/Bi2O3 photocatalysts under UV and visible light. J. Mol. Catal., A, 2015, 398, 215-222. https://doi.org/10.1016/j.molcata.2014.12.007

    Article  CAS  Google Scholar 

  28. M. Lyulyukin, N. Kovalevskiy, A. Bukhtiyarov, D. Kozlov, and D. Selishchev. Kinetic aspects of benzene degradation over TiO2–N and composite Fe/Bi2WO6/TiO2–N photocatalysts under irradiation with visible light. Int. J. Mol. Sci., 2023, 24(6), 5693. https://doi.org/10.3390/ijms24065693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. H. Scofield. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectros. Relat. Phenomena, 1976, 8(2), 129-137. https://doi.org/10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

  30. P. Makuła, M. Pacia, and W. Macyk. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-vis spectra. J. Phys. Chem. Lett., 2018, 9(23), 6814-6817. https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  PubMed  Google Scholar 

  31. J. Tauc, R. Grigorovici, and A. Vancu. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi, 1966, 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224

    Article  ADS  CAS  Google Scholar 

  32. G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios. Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org. Electron., 2008, 9(5), 847-851. https://doi.org/10.1016/j.orgel.2008.06.007

    Article  CAS  Google Scholar 

  33. G. Garcia-Belmonte, P. P. Boix, J. Bisquert, M. Sessolo, and H. J. Bolink. Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy. Sol. Energy Mater. Sol. Cells, 2010, 94(2), 366-375. https://doi.org/10.1016/j.solmat.2009.10.015

    Article  CAS  Google Scholar 

  34. J. Bisquert. Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B, 2002, 106(2), 325-333. https://doi.org/10.1021/jp011941g

    Article  CAS  Google Scholar 

  35. Y. Yang, X. Li, J. Chen, and L. Wang. Effect of doping mode on the photocatalytic activities of Mo/TiO2. J. Photochem. Photobiol., A, 2004, 163(3), 517-522. https://doi.org/10.1016/j.jphotochem.2004.02.008

    Article  CAS  Google Scholar 

  36. M. Lyulyukin, N. Kovalevskiy, I. Prosvirin, D. Selishchev, and D. Kozlov. Thermo-photoactivity of pristine and modified titania photocatalysts under UV and blue light. J. Photochem. Photobiol., A, 2022, 425, 113675. https://doi.org/10.1016/j.jphotochem.2021.113675

    Article  CAS  Google Scholar 

  37. J.-P. Zou, J. Ma, J.-M. Luo, J. Yu, J. He, Y. Meng, Z. Luo, S.-K. Bao, H.-L. Liu, S.-L. Luo, X.-B. Luo, T.-C. Chen, and S. L. Suib. Fabrication of novel heterostructured few layered WS2–Bi2WO6/Bi3.84W0.16O6.24 composites with enhanced photocatalytic performance. Appl. Catal., B, 2015, 179, 220-228. https://doi.org/10.1016/j.apcatb.2015.05.031

    Article  ADS  CAS  Google Scholar 

  38. Y. Shu, W. Hu, Z. Liu, G. Shen, B. Xu, Z. Zhao, J. He, Y. Wang, Y. Tian, and D. Yu. Coexistence of multiple metastable polytypes in rhombohedral bismuth. Sci. Rep., 2016, 6(1), 20337. https://doi.org/10.1038/srep20337

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. W. Jahjah, J.-P. Jay, Y. Le Grand, A. Fessant, J. Richy, C. Marcelot, B. Warot-Fonrose, A. R. E. Prinsloo, C. J. Sheppard, D. T. Dekadjevi, and D. Spenato. Influence of mesoporous or parasitic BiFeO3 structural state on the magnetization reversal in multiferroic BiFeO3/Ni81Fe19 polycrystalline bilayers. J. Appl. Phys., 2018, 124(23), 235309. https://doi.org/10.1063/1.5049546

    Article  Google Scholar 

  40. V. P. Zhukov, V. M. Zhukovskii, V. M. Zainullina, and N. I. Medvedeva. Electronic structure and chemical bonding in bismuth sesquioxide polymorphs. J. Struct. Chem., 1999, 40(6), 831-837. https://doi.org/10.1007/bf02700687

    Article  CAS  Google Scholar 

  41. J. F. Moulder, W. F. Tickle, P. E. Sobol, and K. D. Bomben. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin-Elmer Corporation, Physical Electronics Division, 1992.

  42. X. Qin, Y. Li, D. Wu, Y. Wu, R. Chen, Z. Ma, S. Liu, and J. Qiu. A novel NIR long phosphorescent phosphor: SrSnO3:Bi2+. RSC Adv., 2015, 5(123), 101347-101352. https://doi.org/10.1039/c5ra22375j

    Article  ADS  CAS  Google Scholar 

  43. W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, and X. W. (David) Lou. Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci., 2016, 9(9), 2881-2891. https://doi.org/10.1039/c6ee01871h

    Article  CAS  Google Scholar 

  44. E. Koshevoy, E. Gribov, D. Polskikh, M. Lyulyukin, M. Solovyeva, S. Cherepanova, D. Kozlov, and D. Selishchev. Photoelectrochemical methods for the determination of the flat-band potential in semiconducting photocatalysts: A comparison study. Langmuir, 2023, 39(38), 13466-13480. https://doi.org/10.1021/acs.langmuir.3c01158

    Article  CAS  PubMed  Google Scholar 

  45. A. Elaouni, M. El Ouardi, A. BaQais, M. Arab, M. Saadi, and H. Ait Ahsaine. Bismuth tungstate Bi2WO6: A review on structural, photophysical and photocatalytic properties. RSC Adv., 2023, 13(26), 17476-17494. https://doi.org/10.1039/d3ra01987j

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Yin, K. Zhong, Q. Yu, Z. Wang, Q. Li, Z. Feng, H. Du, J. Yang, Y. Hua, X. Zhu, and H. Xu. Boosting CO2 capture and its photochemical conversion on bismuth surface. Phys. Status Solidi, 2021, 218(9). https://doi.org/10.1002/pssa.202000671

    Article  Google Scholar 

  47. F. Orudzhev, S. Ramazanov, D. Sobola, A. Isaev, C. Wang, A. Magomedova, M. Kadiev, and K. Kaviyarasu. Atomic layer deposition of mixed-layered aurivillius phase on TiO2 nanotubes: Synthesis, characterization and photoelectrocatalytic properties. Nanomaterials, 2020, 10(11), 2183. https://doi.org/10.3390/nano10112183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. G. Zhou, Y. Huang, D. Wei, Z. Fan, and H. J. Seo. Solvothermal synthesis, morphology, and optical properties of Bi2O3 and Bi/Bi2O2.75 powders. J. Nanoparticle Res., 2020, 22(1), 15. https://doi.org/10.1007/s11051-019-4728-6

    Article  CAS  Google Scholar 

  49. M. Jia and J. T. Newberg. Surface chemistry of liquid bismuth under oxygen and water vapor studied by ambient pressure X-ray photoelectron spectroscopy. Appl. Surf. Sci., 2021, 539, 148219. https://doi.org/10.1016/j.apsusc.2020.148219

    Article  CAS  Google Scholar 

  50. H. Gnayem and Y. Sasson. Nanostructured 3D sunflower-like bismuth doped BiOClxBr1–x solid solutions with enhanced visible light photocatalytic activity as a remarkably efficient technology for water purification. JPhys. Chem. C, 2015, 119(33), 19201-19209. https://doi.org/10.1021/acs.jpcc.5b05217

    Article  CAS  Google Scholar 

  51. Y. Hermans, S. Murcia-López, A. Klein, R. van de Krol, T. Andreu, J. R. Morante, T. Toupance, and W. Jaegermann. Analysis of the interfacial characteristics of BiVO4/metal oxide heterostructures and its implication on their junction properties. Phys. Chem. Chem. Phys., 2019, 21(9), 5086-5096. https://doi.org/10.1039/c8cp07483f

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 23-23-00505, https://rscf.ru/project/23-23-00505/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Lyulyukin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 122698.https://doi.org/10.26902/JSC_id122698

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyulyukin, M.N., Morozova, M.E., Polskikh, D.A. et al. Structural Features and Their Relation with Catalytic Properties of Bi2WO6/TiO2–N Composites Upon Photo-Oxidation of Benzene Vapors. J Struct Chem 65, 341–354 (2024). https://doi.org/10.1134/S0022476624020124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020124

Keywords

Navigation