Skip to main content
Log in

Synthesis, Structure, and Properties of 4-Methyl-N-[2-(Pentafluorophenyliminomethyl)Phenyl]Methyl-Benzenesulfamide and the Copper(II) Complex Based on It

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new azomethine compound 4-methyl-N-[2-pentafluorophenyliminomethyl)phenyl]methylbenzenesulfamide and a Cu(II) complex based on it are obtained and characterized by 1H NMR, IR spectroscopy and the elemental analysis. Crystal structures of azomethine and its complex are analyzed by single crystal X-ray diffraction (XRD). From the single crystal XRD data it is found that the Cu(II) complex crystallizes in the triclinic space group \(P\bar{1}\). The unit cell contains two crystallographically independent mononuclear molecules with similar geometries. In the complex, copper ions have a distorted tetrahedral environment of four nitrogen atoms, which is formed by two bidentate coordinated azomethine ligands. From magnetic measurements it is found that the Cu(II) complex is paramagnetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

REFERENCES

  1. A. M. Abu-Dief and I. M. A. Mohamed. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J. Basic Appl. Sci., 2015, 4, 119. https://doi.org/10.1016/j.bjbas.2015.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  2. A. Soroceanu and A. Bargan. Advanced and biomedical applications of Schiff-base ligands and their metal complexes: A review. Crystals, 2022, 12, 1436. https://doi.org/10.3390/cryst12101436

    Article  CAS  Google Scholar 

  3. Schiff Base in Organic, Inorganic and Physical Chemistry / Ed. T. Akitsu. IntechOpen, 2023. https://doi.org/10.5772/intechopen.104134

    Book  Google Scholar 

  4. W. Zoubi. Biological activities of schiff bases and their complexes: A review of recent works. Inter. J. Org. Chem., 2013, 3, 73. https://doi.org/10.4236/ijoc.2013.33A008

    Article  Google Scholar 

  5. I. Tsacheva, Z. Todorova, D. Momekova, G. Momekov, and N. Koseva. Pharmacological activities of Schiff bases and their derivatives with low and high molecular phosphonates. Pharmaceuticals, 2023, 16, 938. https://doi.org/10.3390/ph16070938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Ceramella, D. Iacopetta, A. Catalano, F. Cirillo, R. Lappano, and M. S. Sinicropi. A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics, 2022, 11(2), 191. https://doi.org/10.3390/antibiotics11020191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Pervaiz, A. Munir, A. Riaz, Z. Saeed, U. Younas, M. Imran, S. Ullah, R. Bashir, A. Rashid, and A. Adnan. Review article: Amalgamation, scrutinizing, and biological evaluation of the antimicrobial aptitude of thiosemicarbazide Schiff bases derivatives metal complexes. Inorg. Chem. Commun., 2022, 141, 109459. https://doi.org/10.1016/j.inoche.2022.109459

    Article  CAS  Google Scholar 

  8. R. Kumar, A. Abha Singh, U. Kumar, P. Jain, A. Kumar Sharma, C. Kant, and M. S. Haque Faizi. Recent advances in synthesis of heterocyclic Schiff base transition metal complexes and their antimicrobial activities especially antibacterial and antifungal. J. Mol. Struct., 2023, 1294, 136346. https://doi.org/10.1016/j.molstruc.2023.136346

    Article  CAS  Google Scholar 

  9. B. G. Tweedy. Plant extracts with metal ions as potential antimicrobial agents. Phytopatology, 1964, 55, 910.

  10. S. Q. Memon, N. Memon, A. Mallah, R. Soomro, and M. Y. Khuhawar. Schiff bases as chelating reagents for metal ions analysis. Curr. Anal. Chem., 2014, 10, 393. https://doi.org/10.2174/157341101003140521113731

    Article  CAS  Google Scholar 

  11. A. L. Berhanu, Gaurav, I. Mohiuddin, A. Kumar Malik, J. Singh Aulakh, V. Kumar, and Ki-Hyun Kim. A review of the applications of Schiff bases as optical chemical sensors. Trends Anal. Chem., 2019, 116, 74. https://doi.org/10.1016/j.trac.2019.04.025

    Article  CAS  Google Scholar 

  12. V. K. Juyal, A. Pathak, M. Panwar, S. C. Thakuri, O. Prakash, A. Agrwal, and V. Nand. Schiff base metal complexes as a versatile catalyst: A review. J. Organomet. Chem., 2023, 999, 122825. https://doi.org/10.1016/j.jorganchem.2023.122825

    Article  CAS  Google Scholar 

  13. K. C. Gupta and A. K. Sutar. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev., 2008, 252, 1420-1450 https://doi.org/10.1016/j.ccr.2007.09.005

    Article  CAS  Google Scholar 

  14. A. S. Burlov, Yu. V. Koshchienko, V. N. Ikorskii, V. G. Vlasenko, I. A. Zarubin, A. I. Uraev, I. S. Vasil′chenko, D. A. Ganovskii, G. S. Borodkin, S. A. Nikolaevskii, and A. D. Garnovskii. New magnetoactive copper complexes with Schiff′s bases. Russ. J. Inorg. Chem., 2006, 51, 1065. https://doi.org/10.1134/S0036023606070096

    Article  Google Scholar 

  15. A. S. Burlov, S. A. Nikolaevskii, A. S. Bogomyakov, I. S. Vasil′chenko, Y. V. Koshchienko, V. G. Vlasenko, A. I. Uraev, D. A. Garnovskii, E. V. Sennikova, G. S. Borodkin, A. D. Garnovskii, and V. I. Minkin. New magnetically active metal complexes of tridentate Schiff bases of phenylazosalicylaldehyde. Russ. J. Coord. Chem., 2009, 35, 486. https://doi.org/10.1134/S1070328409070045

    Article  CAS  Google Scholar 

  16. Yu. P. Tupolova, V. A. Kogan, V. V. Lukov, L. D. Popov, I. E. Gevorkyan, and V. G. Vlasenko. Synthesis and magnetic properties of the novel binuclear copper(II) metallochelates with unsymmetrical exchange fragment including heterocyclic derivatives. Transition Met. Chem., 2007, 32, 656. https://doi.org/10.1007/s11243-007-0218-2

    Article  CAS  Google Scholar 

  17. A. S. Burlov, V. G. Vlasenko, D. A. Garnovskii, N. V. Polosareva, A. S. Antsyshkina, G. G. Sadikov, V. S. Sergienko, A. V. Churakov, Ya. V. Zubavichus, E. I. Mal′tsev, A. V. Dmitriev, D. A. Lypenko, A. S. Cheprasov, G. S. Borodkin, and A. V. Metelitsa. Synthesis, crystal structure, and electroluminescent properties of zinc and cadmium tetradentate azomethine complexes. Russ. J. Inorg. Chem., 2014, 59, 721. https://doi.org/10.1134/S0036023614070031

    Article  CAS  Google Scholar 

  18. A. S. Burlov, V. G. Vlasenko, Yu. V. Koshchienko, N. I. Makarova, A. A. Zubenko, Yu. D. Drobin, G. S. Borodkin, A. V. Metelitsa, Ya. V. Zubavichus, and D. A. Garnovskii. Complexes of zinc(II) with N-[2-(hydroxylalkyliminomethyl)phenyl]-4-methylbenzenesulfonamides: Synthesis, structure, photoluminescence properties and biological activity. Polyhedron, 2018, 144, 249. https://doi.org/10.1016/j.poly.2018.01.020

    Article  CAS  Google Scholar 

  19. A. S. Burlov, E. I. Mal′tsev, V. G. Vlasenko, D. A. Garnovskii, A. V. Dmitriev, D. A. Lypenko, A. V. Vannikov, P. V. Dorovatovskii, V. A. Lazarensko, Ya. V. Zubavichus, and V. N. Khrustalev. Synthesis, structure, photo- and electroluminescent properties of bis{(4-methyl-N-[2-[(E)-2-pyridyliminmethyl]phenyl)]benzenesulfonamide}zinc(II). Polyhedron, 2017, 133, 231. https://doi.org/10.1016/j.poly.2017.05.045

    Article  CAS  Google Scholar 

  20. A. S. Burlov, V. G. Vlasenko, M. S. Milutka, Y. V. Koshchienko, N. I. Makarova, V. A. Lazarenko, A. L. Trigub, A. A. Kolodina, A. A. Zubenko, A. V. Metelitsa, D. A. Garnovskii, A. N. Gusev, and W. Linert. Synthesis, structure, spectral-luminescent properties, and biological activity of chlorine-substituted N-[2-(phenyliminomethyl)phenyl]-4-methylbenzenesulfamide and their zinc(II) complexes. Inter. J. Mol. Sci., 2022, 23, 15259. https://doi.org/10.3390/ijms232315259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. E. Yao, J. Wang, Z. Chen, and Y. Ma. Homo- and heteroligated salicylaldiminato titanium complexes with different substituents ortho to the phenoxy oxygens for ethylene and ethylene/1-hexene (co)polymerization. Macromolecules, 2014, 47, 8164. https://doi.org/10.1021/ma5017677

    Article  ADS  CAS  Google Scholar 

  22. K. V. Axenov, M. Klinga, O. Lehtonen, H. T. Koskela, M. Leskela, and T. Repo. Hafnium bis(phenoxyimino) dibenzyl complexes and their activation toward olefin polymerization. Organometallics, 2007, 26, 1444. https://doi.org/10.1021/om060753f

    Article  CAS  Google Scholar 

  23. L. Annunziata, D. Pappalardo, C. Tedesco, and C. Pellecchia. Octahedral bis(phenoxy-imine)tin(IV) alkyl complexes: Synthesis, characterization, and reactivity toward ionizing species and ethylene. Organometallics, 2005, 24, 1947. https://doi.org/10.1021/om0491084

    Article  CAS  Google Scholar 

  24. D. R. Meena, Deepa, M. J. Aalam, P. Chaudhary, G. D. Yadav, and S. Singh. Synthesis and structural studies of Pd(II) complexes of bidentate Schiff bases and their catalytic activities as pre-catalysts in the Mizoroki-Heck reaction. Polyhedron, 2022, 222, 115931. https://doi.org/10.1016/j.poly.2022.115931

    Article  CAS  Google Scholar 

  25. S. Lin, H. Pan, L. Li, R. Liao, S. Yu, Q. Zhao, H. Sun, and W. Huang. AIPE-active platinum(II) complexes with tunable photophysical properties and their application in constructing thermosensitive probes used for intracellular temperature imaging. J. Mater. Chem. C, 2019, 7, 7893. https://doi.org/10.1039/c9tc01905g

    Article  CAS  Google Scholar 

  26. V. G. Vlasenko, A. S. Burlov, Y. V. Koshchienko, M. A. Kiskin, D. A. Garnovskii, Y. V. Zubavichus, A. A. Kolodina, A. L. Trigub, A. A. Zubenko, and Y. D. Drobin. Synthesis, characterization, and biological activity of Co(II), Ni(II), and Cu(II) complexes derived from N,N′-bis(2-N-tozylaminobenzylidene)diaminodipropyliminate ligand. Inorg. Chim. Acta, 2020, 510, 119776. https://doi.org/10.1016/j.ica.2020.119766

    Article  CAS  Google Scholar 

  27. V. G. Vlasenko, A. S. Burlov, Y. V. Koshchienko, A. A. Kolodina, S. P. Kubrin, B. V. Chaltsev, Y. V. Zubavichus, V. A. Lazarenko, A. A. Zubenko, and A. I. Klimenko. Synthesis, structural characterization, and biological activities of mononuclear Fe(II), Mn(II), and Ni(II) complexes derived from N-[2-(2-diethylaminoethyliminomethyl)phenyl]-4-methylbenzenesulfonamide. J. Mol. Struct., 2022, 1247, 131370. https://doi.org/10.1016/j.molstruc.2021.131370

    Article  CAS  Google Scholar 

  28. V. G. Vlasenko, A. S. Burlov, Y. V. Koshchienko, A. A. Kolodina, Y. V. Zubavichus, V. N. Khrustalev, T. N. Danilenko, A. A. Zubenko, L. N. Fetisov, and A. I. Klimenko. Synthesis, X-ray structure and biological activity of mono- and dinuclear copper complexes derived from N-{2-[(2-diethylamino(ethyl or propyl)imino)-methyl]-phenyl}-4-methyl-benzenesulfonamide. Inorg. Chim. Acta, 2021, 523, 120408. https://doi.org/10.1016/j.ica.2021.120408

    Article  CAS  Google Scholar 

  29. N. I. Chernova, Yu. S. Ryabokobylko, V. G. Brudz′, and B. M. Bolotin. 2-(N-tozilamino)benzal′degid i ego zamestitel′noe proizvodnoe (2-(N-tosylamino)benzaldehyde and substitute derivative). Zh. Org. Khim., 1971, 7, 1680. [In Russian]

  30. N. E. Gelman, E. A. Terentyeva, T. M. Shanina, and L. M. Kiparenko. Metody kolichestvennogo organicheskogo elementnogo analiza (Methods of Quantitative Organic Elemental Analysis). Moscow, Russia: Khimiya, 1987. [In Russian]

  31. APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program (Version 7.31A). Madison, Wisconsin, USA: Bruker Advansed X-Ray Solutions, 2006.

  32. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  ADS  Google Scholar 

  33. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42, 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  34. G. M. Sheldrick. SADABS-2004/1: Program for Scaling and Correction of Area Detector Data. Göttinngen, Germany: Göttingen University, 2004.

  35. A. L. Spek. PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta Crystallogr., Sect. A: Found. Crystallogr., 1990, 46, c34.

  36. Yu. P. Dormidontov. Metody UF, IK i YaMR spektroskopii i ikh primenenie v organicheskoi khimii (Methods of UV, IR and NMR Spectroscopy and Their Application in Organic Chemistry). Perm, Russia: Perm. Univ., 2008.

  37. K. Nakanishi. Infrared Absorption Spectroscopy. San Francisco, USA: Holden-Day, 1962.

  38. D. A. Garnovskii, M. F. C. Guedes da Silva, M. N. Kopylovich, A. D. Garnovskii, J. J. R. Frausto da Silva, and A. J. L. Pombeiro. Electrochemical synthesis of adducts of 2-aminopyridine or methanol in metal chelates of a N,N,N-tridentate Schiff base ligand. X-ray crystal structures of the Ni(II) and Zn(II) derivatives. Polyhedron, 2003, 22, 1335. https://doi.org/10.1016/S0277-5387(03)00104-9

    Article  CAS  Google Scholar 

  39. E. Labisbal, L. Rodríguez, A. Sousa-Pedrares, M. Alonso, A. Vizoso, J. Romero, J. A. García-Vázquez, and A. Sousa. Synthesis, characterisation and X-ray structures of diorganotin(IV) and iron(III) complexes of dianionic terdentate Schiff base ligands. J. Organomet. Chem., 2006, 691, 1321. https://doi.org/10.1016/j.jorganchem.2005.09.052

    Article  CAS  Google Scholar 

  40. V. G. Vlasenko, A. S. Burlov, M. A. Kiskin, S. A. Nikolaevsky, Yu. V. Koshchienko, and A. A. Shiryaeva. Synthesis and structure of Cu(II) and Co(II) complexes with N-{2-[(E)-(4-cyclohexylphenyl)iminomethyl]phenyl}-4-methylbenzene-1-sulfonamide. J. Struct. Chem., 2023, 64(5), 906. https://doi.org/10.1134/S0022476623050098

    Article  CAS  Google Scholar 

  41. L. Yang, D. R. Powell, and R. P. Houser. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans., 2007, 9, 955. https://doi.org/10.1039/b617136b

    Article  PubMed  Google Scholar 

  42. J. Cirera, P. Alemany, and S. Alvarez. Mapping the stereochemistry and symmetry of tetracoordinate transition-metal complexes. Chem. Eur. J., 2004, 10, 190. https://doi.org/10.1002/chem.200305074

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment in the research field No. FENW-2023-0014, 2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Vlasenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 121603.https://doi.org/10.26902/JSC_id121603

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasenko, V.G., Burlov, A.S., Nikolaevskii, S.A. et al. Synthesis, Structure, and Properties of 4-Methyl-N-[2-(Pentafluorophenyliminomethyl)Phenyl]Methyl-Benzenesulfamide and the Copper(II) Complex Based on It. J Struct Chem 65, 256–266 (2024). https://doi.org/10.1134/S0022476624020045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020045

Keywords

Navigation