Skip to main content
Log in

Bisoxalateiridium Acid, a New Rare Example of a Crystal Complex Acid with the \({{\text{H}}_{5}}\text{O}_{2}^{+}\) Cation, and Its Sodium Salt

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

New coordination compounds, sodium trans-bis(oxalato)diaqua-iridate(III) dihydrate Na[Ir(H2O)2(C2 O4)2]·2H2O and trans-bis(oxalato)diaquairidic acid H5O2[Ir(H2O)2(C2O4)2], are prepared. The substances are characterized by single-crystal XRD, powder XRD, and IR spectroscopy. Crystal data for Na[Ir(H2O)2(C2O4)2]·2H2O: \(P\bar{1}\) space group, a = 5.2456(7) Å, b = 6.4999(8) Å, c = 8.237(1) Å, α = 98.162(6)°, β = 92.005(6)°, γ = 112.043(4)°, Z = 1; for H5O2[Ir(H2O)2(C2O4)2]: \(P\bar{1}\) space group, a = 4.6903(2) Å, b = 6.0053(3) Å, c = 9.1527(5) Å, α = 75.843(2)°, β = 84.270(2)°, γ = 82.413(2)°, Z = 1. The coordination sphere of iridium is a distorted octahedron. The Na[Ir(H2O)2(C2O4)2]·2H2O structure is similar to those of MC2O4·2H2O divalent metal oxalates (M = Mn, Fe, Co, Ni, Cu, Zn). The \({{\text{H}}_{\text{5}}}\text{O}_{2}^{+}\) Zundel cation in the trans-bis(oxalato)iridic acid is located discretely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. U. Babic, M. Suermann, F. N. Büchi, L. Gubler, and T. J. Schmidt. Critical review - Identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc., 2017, 164(4), F387-F399. https://doi.org/10.1149/2.1441704jes

    Article  CAS  Google Scholar 

  2. E. Antolini. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal., 2014, 4(5), 1426-1440. https://doi.org/10.1021/cs4011875

    Article  CAS  Google Scholar 

  3. C. Spöri, P. Briois, H. N. Nong, T. Reier, A. Billard, S. Kühl, D. Teschner, and P. Strasser. Experimental activity descriptors for iridium-based catalysts for the electrochemical oxygen evolution reaction (OER). ACS Catal., 2019, 9(8), 6653-6663. https://doi.org/10.1021/acscatal.9b00648

    Article  CAS  Google Scholar 

  4. M. Retuerto, L. Pascual, O. Piqué, P. Kayser, M. A. Salam, M. Mokhtar, J. A. Alonso, M. Peña, F. Calle-Vallejo, and S. Rojas. How oxidation state and lattice distortion influence the oxygen evolution activity in acid of iridium double perovskites. J. Mater. Chem. A, 2021, 9(5), 2980-2990. https://doi.org/10.1039/d0ta10316k

    Article  CAS  Google Scholar 

  5. J. A. Clayton and R. I. Walton. Development of new mixed-metal ruthenium and iridium oxides as electrocatalysts for oxygen evolution: Part I: Survey of crystal structures and synthesis methods. Johnson Matthey Technol. Rev., 2022, 66(4), 393-405. https://doi.org/10.1595/205651322x16529612227119

    Article  CAS  Google Scholar 

  6. J. Edgington, N. Schweitzer, S. Alayoglu, and L. C. Seitz. Constant change: Exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid. J. Am. Chem. Soc., 2021, 143(26), 9961-9971. https://doi.org/10.1021/jacs.1c04332

    Article  CAS  PubMed  Google Scholar 

  7. T. Reier, M. Oezaslan, and P. Strasser. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal., 2012, 2(8), 1765-1772. https://doi.org/10.1021/cs3003098

    Article  CAS  Google Scholar 

  8. J. Quinson. Iridium and IrOx nanoparticles: An overview and review of syntheses and applications. Adv. Colloid Interface Sci., 2022, 303, 102643. https://doi.org/10.1016/j.cis.2022.102643

    Article  CAS  PubMed  Google Scholar 

  9. C. Gialdini. Sopra alcuni sali complessi dell′iridio. Iridoossalati. Rend. Acad. Lincei, 1907, 5a(16), 551-561.

  10. A. Duffour. Contribution à l′étude des dérivés oxaliques complexes de l′iridium. Ann. Chim. Phys., 1913, 30, 433-485.

  11. I. Garkul, A. Zadesenets, E. Filatov, I. Baidina, S. Tkachev, D. Samsonenko, and S. Korenev. Oxonium trans-bis(oxalato)rhodate and related sodium salts: A rare example of crystalline complex acid. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2021, 77(6), 1048-1054. https://doi.org/10.1107/s205252062101115x

    Article  ADS  CAS  Google Scholar 

  12. M. A. Petit and V. Plichon. Anodic electrodeposition of iridium oxide films. J. Electroanal. Chem., 1998, 444(2), 247-252. https://doi.org/10.1016/s0022-0728(97)00570-6

    Article  CAS  Google Scholar 

  13. A. M. Cruz, L. Abad, N. M. Carretero, J. Moral-Vico, J. Fraxedas, P. Lozano, G. Subías, V. Padial, M. Carballo, J. E. Collazos-Castro, and N. Casañ-Pastor. Iridium oxohydroxide, a significant member in the family of iridium oxides. Stoichiometry, characterization, and implications in bioelectrodes. J. Phys. Chem. C, 2012, 116(8), 5155-5168. https://doi.org/10.1021/jp212275q

    Article  CAS  Google Scholar 

  14. M. Delépine. Sur les irido-dichloro-dioxalates cis et trans. Bull. Soc. Chim., 1917, 7, 277.

  15. N. K. Pshenitsyn and S. E. Krasikov. K voprosu o poluchenii chistogo gidrata dvuokisi iridiya (On the issue of obtaining pure iridium dioxide hydrate). Izv. Inst. Izuch. Platiny Drugikh Blagorodn. Met., Akad. Nauk SSSR, 1932, 9, 135. [In Russian]

  16. Bruker APEX3 V2019.1-0 (SAINT V8.40A, SADABS-2016/2). Madison, Wisconsin, USA: Bruker Advanced X-ray Solutions, 2019.

  17. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  18. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  19. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  ADS  Google Scholar 

  20. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  ADS  Google Scholar 

  21. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B. John Wiley and Sons, 2009.

  22. D. A. Reed and M. M. Olmstead. Sodium oxalate structure refinement. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1981, 37(4), 938/939. https://doi.org/10.1107/s0567740881004676

    Article  ADS  Google Scholar 

  23. M. Bélombé, J. Nenwa, B. P. T. Fokwa, and R. Dronskowski. Potassium trans-diaquabis[oxalato(2–)-κ2O,O′]chromate(III). Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62(6), m1400-m1402. https://doi.org/10.1107/s1600536806018344

    Article  Google Scholar 

  24. L. T. Bugaenko, S. M. Ryabykh, and A. L. Bugaenko. Pochti polnaya sistema srednikh ionnykh kristallograficheskikh radiusov i ee ispol′zovanie dlya opredeleniya potentsialov ionizatsii (Almost complete system of average ionic crystallographic radii and its use for determining ionization potentials). Vestn. Mosk. Gos. Univ., Ser. Khim., 2008, 49(6), 363-384. [In Russian]

  25. J.-U. Rohde and W. Preetz. Synthesis and crystal structures of the bis(oxalato)metallate trans-K3[RhCl2(C2O4)2]4H2O and cis-K3[IrCl2(C2O4)2]·H2O. Z. Naturforsch. B, 2000, 55(6), 473-478. https://doi.org/10.1515/znb-2000-0605

    Article  CAS  Google Scholar 

  26. P. Herpin. Structure cristalline des trioxalates complexes de potassium. I. Structure de l′irido et du rhodotrioxalate de potassium actifs. Bull. Soc. Fr. Mineral. Cristallogr., 1958, 81(7), 201-219. https://doi.org/10.3406/bulmi.1958.5265

    Article  CAS  Google Scholar 

  27. G. Zundel and H. Metzger. Energiebänder der tunnelnden Überschuß-Protonen in flüssigen Säuren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O2+. Z. Phys. Chem., 1968, 58(5_6), 225-245. https://doi.org/10.1524/zpch.1968.58.5_6.225

    Article  CAS  Google Scholar 

  28. F. F. Muguet. MCSCF vibrational spectra of the symmetric and asymmetric dihydronium cations. J. Mol. Struct.: THEOCHEM, 1996, 368, 173-196. https://doi.org/10.1016/s0166-1280(96)90559-x

    Article  CAS  Google Scholar 

  29. J. C. Lassegues and D. Cavagnat. Neutron scattering study of the proton dynamics in aqueous solutions of sulphuric acid and caesium sulphate. Mol. Phys., 1989, 68(4), 803-822. https://doi.org/10.1080/00268978900102561

    Article  ADS  CAS  Google Scholar 

  30. R. Triolo and A. H. Narten. Diffraction pattern and structure of aqueous hydrochloric acid solutions at 20 °C. J. Chem. Phys., 1975, 63(8), 3624-3631. https://doi.org/10.1063/1.431756

    Article  ADS  CAS  Google Scholar 

  31. N. Lebrun, F. Mahe, J. Lamiot, M. Foulon, and J. C. Petit. A new crystalline phase of nitric acid dihydrate. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2001, 57(10), 1129-1131. https://doi.org/10.1107/s0108270101010101

    Article  ADS  CAS  PubMed  Google Scholar 

  32. T. Kjällman and I. Olovsson. Hydrogen bond studies. LVIII. The crystal structures of normal and deuterated sulphuric acid tetrahydrate, (H5O2+)2SO42 and (D5O2+)2SO42−. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1972, 28(6), 1692-1697. https://doi.org/10.1107/s056774087200487x

    Article  ADS  Google Scholar 

  33. W. Frank and G. J. Reiß. Alkylammonium hexachlorometallates, IV. Synthesis and crystal structure of bis(1,4-diammoniobutane) diaquahydrogen hexachlororhodate(III) dichloride, [H3N–(CH2)4–NH3]2[H5O2][RhCl6]Cl2. Chem. Ber., 1996, 129(11), 1355-1359. https://doi.org/10.1002/cber.19961291107

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 21-73-20203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Zaitseva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 122220.https://doi.org/10.26902/JSC_id122220

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, T.V., Zadesenets, A.V., Filatov, E.Y. et al. Bisoxalateiridium Acid, a New Rare Example of a Crystal Complex Acid with the \({{\text{H}}_{5}}\text{O}_{2}^{+}\) Cation, and Its Sodium Salt. J Struct Chem 65, 301–312 (2024). https://doi.org/10.1134/S0022476624020082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020082

Keywords

Navigation