Skip to main content
Log in

Structure and Stability of Phosphorus Nanoclusters in a Wide Composition Range (P17–P220)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structures of phosphorus clusters with the number of atoms from 17 to 220 and their stability are studied theoretically. To calculate total energies of clusters a model is used that allows the highly accurate reproduction of density functional theory results. Calculations show that the most energetically favorable clusters Pn with 17 ≤ n ≤ 90 are single-stranded structures. At 91 ≤ n ≤ 125 these systems compete with double strands of fibrous phosphorus, and at n ≥ 126 fibrous phosphorus clusters become more favorable. The application of local stability criteria makes it possible to reveal the most stable clusters that are most likely to occur in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. M. E. Schlesinger. The thermodynamic properties of phosphorus and solid binary phosphides. Chem. Rev., 2002, 102(11), 4267-4302. https://doi.org/10.1021/cr000039m

    Article  CAS  PubMed  Google Scholar 

  2. A. Simon, H. Borrmann, and J. Horakh. On the polymorphism of white phosphorus. Chem. Ber., 1997, 130(9), 1235-1240. https://doi.org/10.1002/cber.19971300911

    Article  CAS  Google Scholar 

  3. H. Okudera, R. E. Dinnebier, and A. Simon. The crystal structure of γ-P4, a low temperature modification of white phosphorus. Z. Kristallogr. - Cryst. Mater., 2005, 220(2/3), 259-264. https://doi.org/10.1524/zkri.220.2.259.59137

    Article  ADS  CAS  Google Scholar 

  4. H. Östmark, S. Wallin, N. Hore, and O. Launila. Raman spectra of P4 at low temperatures. J. Chem. Phys., 2003, 119(12), 5918-5922. https://doi.org/10.1063/1.1602062

    Article  ADS  CAS  Google Scholar 

  5. P. A. G. O′Hare, B. M. Lewis, and I. Shirotani. Thermodynamic stability of orthorhombic black phosphorus. Thermochim. Acta, 1988, 129(1), 57-62. https://doi.org/10.1016/0040-6031(88)87196-x

    Article  Google Scholar 

  6. V. V. Brazhkin and A. J. Zerr. Relative stability of red and black phosphorus at P < 1 GPa. J. Mater. Sci., 1992, 27(10), 2677-2681. https://doi.org/10.1007/bf00540689

    Article  ADS  CAS  Google Scholar 

  7. H. Thurn and H. Krebs. Über Struktur und Eigenschaften der Halbmetalle. XXII. Die Kristallstruktur des Hittorfschen Phosphors. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, 25(1), 125-135. https://doi.org/10.1107/s0567740869001853

    Article  ADS  CAS  Google Scholar 

  8. M. Ruck, D. Hoppe, B. Wahl, P. Simon, Y. Wang, and G. Seifert. Fibrous red phosphorus. Angew. Chem., Int. Ed., 2005, 44(46), 7616-7619. https://doi.org/10.1002/anie.200503017

    Article  CAS  Google Scholar 

  9. L. Zhang, H. Huang, B. Zhang, M. Gu, D. Zhao, X. Zhao, L. Li, J. Zhou, K. Wu, Y. Cheng, and J. Zhang. Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew. Chem., Int. Ed., 2020, 59(3), 1074-1080. https://doi.org/10.1002/anie.201912761

    Article  CAS  Google Scholar 

  10. C.-M. Park, J.-H. Kim, H. Kim, and H.-J. Sohn. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev., 2010, 39(8), 3115. https://doi.org/10.1039/b919877f

    Article  CAS  PubMed  Google Scholar 

  11. H. Tian, J. Wang, G. Lai, Y. Dou, J. Gao, Z. Duan, X. Feng, Q. Wu, X. He, L. Yao, L. Zeng, Y. Liu, X. Yang, J. Zhao, S. Zhuang, J. Shi, G. Qu, X.-F. Yu, P. K. Chu, and G. Jiang. Renaissance of elemental phosphorus materials: Properties, synthesis, and applications in sustainable energy and environment. Chem. Soc. Rev., 2023, 52(16), 5388-5484. https://doi.org/10.1039/d2cs01018f

    Article  CAS  PubMed  Google Scholar 

  12. J. Zhou, X. Liu, W. Cai, Y. Zhu, J. Liang, K. Zhang, Y. Lan, Z. Jiang, G. Wang, and Y. Qian. Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv. Mater., 2017, 29(29). https://doi.org/10.1002/adma.201700214

    Article  PubMed  Google Scholar 

  13. N. Yabuuchi, Y. Matsuura, T. Ishikawa, S. Kuze, J. Son, Y. Cui, H. Oji, and S. Komaba. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem, 2014, 1(3), 580-589. https://doi.org/10.1002/celc.201300149

    Article  CAS  Google Scholar 

  14. W. Liu, H. Zhi, X. Yu. Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Mater., 2019, 16, 290-322. https://doi.org/10.1016/j.ensm.2018.05.020

    Article  Google Scholar 

  15. J. Zhou, Q. Shi, S. Ullah, X. Yang, A. Bachmatiuk, R. Yang, and M. H. Rummeli. Phosphorus-based composites as anode materials for advanced alkali metal ion batteries. Adv. Funct. Mater., 2020, 30(49). https://doi.org/10.1002/adfm.202004648

    Article  Google Scholar 

  16. W. Li, Z. Yang, M. Li, Y. Jiang, X. Wei, X. Zhong, L. Gu, and Y. Yu. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett., 2016, 16(3), 1546-1553. https://doi.org/10.1021/acs.nanolett.5b03903

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Z. Yu, J. Song, M. L. Gordin, R. Yi, D. Tang, and D. Wang. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci., 2015, 2(1/2). https://doi.org/10.1002/advs.201400020

    Article  PubMed  PubMed Central  Google Scholar 

  18. L. Wang, X. He, J. Li, W. Sun, J. Gao, J. Guo, and C. Jiang. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed., 2012, 51(36), 9034-9037. https://doi.org/10.1002/anie.201204591

    Article  CAS  Google Scholar 

  19. Y. Zhang, H. Wang, Z. Luo, H. T. Tan, B. Li, S. Sun, Z. Li, Y. Zong, Z. J. Xu, Y. Yang, K. A. Khor, and Q. Yan. An air-stable densely packed phosphorene–graphene composite toward advanced lithium storage properties. Adv. Energy Mater., 2016, 6(12). https://doi.org/10.1002/aenm.201600453

    Article  Google Scholar 

  20. T. Yuan, J. Ruan, C. Peng, H. Sun, Y. Pang, J. Yang, Z.-F. Ma, and S. Zheng. 3D red phosphorus/sheared CNT sponge for high performance lithium-ion battery anodes. Energy Storage Mater., 2018, 13, 267-273. https://doi.org/10.1016/j.ensm.2018.01.014

    Article  Google Scholar 

  21. Y. Zhang, L. Wang, H. Xu, J. Cao, D. Chen, and W. Han. 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries. Adv. Funct. Mater., 2020, 30(12). https://doi.org/10.1002/adfm.201909372

    Article  Google Scholar 

  22. D. V. Rybkovskiy, V. O. Koroteev, A. Impellizzeri, A. A. Vorfolomeeva, E. Y. Gerasimov, A. V. Okotrub, A. Chuvilin, L. G. Bulusheva, and C. P. Ewels. “Missing” one-dimensional red-phosphorus strands encapsulated within single-walled carbon nanotubes. ACS Nano, 2022, 16(4), 6002-6012. https://doi.org/10.1021/acsnano.1c11349

    Article  CAS  PubMed  Google Scholar 

  23. Z. Xu, Y. Zeng, L. Wang, N. Li, C. Chen, C. Li, J. Li, H. Lv, L. Kuang, and X. Tian. Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries. J. Power Sources, 2017, 356, 18-26. https://doi.org/10.1016/j.jpowsour.2017.04.064

    Article  ADS  CAS  Google Scholar 

  24. A. A. Vorfolomeeva, S. G. Stolyarova, I. P. Asanov, E. V. Shlyakhova, P. E. Plyusnin, E. A. Maksimovskiy, E. Y. Gerasimov, A. L. Chuvilin, A. V. Okotrub, and L. G. Bulusheva. Single-walled carbon nanotubes with red phosphorus in lithium-ion batteries: Effect of surface and encapsulated phosphorus. Nanomaterials, 2022, 13(1), 153. https://doi.org/10.3390/nano13010153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Hart, E. R. White, J. Chen, C. M. McGilvery, C. J. Pickard, A. Michaelides, A. Sella, M. S. P. Shaffer, and C. G. Salzmann. Encapsulation and polymerization of white phosphorus inside single-wall carbon nanotubes. Angew. Chem., Int. Ed., 2017, 56(28), 8144-8148. https://doi.org/10.1002/anie.201703585

    Article  CAS  Google Scholar 

  26. J. Zhang, D. Zhao, D. Xiao, C. Ma, H. Du, X. Li, L. Zhang, J. Huang, H. Huang, C. Jia, D. Tománek, and C. Niu. Assembly of ring-shaped phosphorus within carbon nanotube nanoreactors. Angew. Chem., Int. Ed., 2017, 56(7), 1850-1854. https://doi.org/10.1002/anie.201611740

    Article  CAS  Google Scholar 

  27. K. Xiang-Lei. Size effect on the signal intensity difference between odd- and even-numbered phosphorus cluster ions. Acta Phys.-Chim. Sin., 2013, 29(03), 486-490. https://doi.org/10.3866/pku.whxb201212121

    Article  ADS  Google Scholar 

  28. R. Huang, Z. Liu, H. Liu, L. Chen, Q. Zhang, C. Wang, L. Zhang, F. Liu, S. Yu, and X. Ma. Collision-induced dissociation of mass-selected phosphorus cluster cations. Int. J. Mass Spectrom. Ion Process., 1995, 151(1), 55-62. https://doi.org/10.1016/0168-1176(95)04291-1

    Article  ADS  CAS  Google Scholar 

  29. L. Mu, S. Yang, X. Bao, H. Yin, and X. Kong. Medium-sized phosphorus cluster cations P+2m+1 (6 ≤ m ≤ 32) studied by collision-induced dissociation mass spectrometry. J. Mass Spectrom., 2015, 50(12), 1352-1357. https://doi.org/10.1002/jms.3705

    Article  ADS  CAS  PubMed  Google Scholar 

  30. S. Yang, L. Mu, and X. Kong. Collision-induced dissociation mass spectrometry of phosphorus cluster anions P2m+1 (3 ≤ m ≤ 20). Int. J. Mass Spectrom., 2016, 399/400, 27-32. https://doi.org/10.1016/j.ijms.2016.02.006

    Article  ADS  CAS  Google Scholar 

  31. R. O. Jones, G. Ganteför, S. Hunsicker, and P. Pieperhoff. Structure and spectroscopy of phosphorus cluster anions: Theory (simulated annealing) and experiment (photoelectron detachment). J. Chem. Phys., 1995, 103(22), 9549-9562. https://doi.org/10.1063/1.469969

    Article  ADS  CAS  Google Scholar 

  32. R. O. Jones and D. Hohl. Structure of phosphorus clusters using simulated annealing - P2 to P8. J. Chem. Phys., 1990, 92(11), 6710-6721. https://doi.org/10.1063/1.458306

    Article  ADS  CAS  Google Scholar 

  33. M. Haeser, U. Schneider, and R. Ahlrichs. Clusters of phosphorus: a theoretical investigation. J. Am. Chem. Soc., 1992, 114(24), 9551-9559. https://doi.org/10.1021/ja00050a039

    Article  CAS  Google Scholar 

  34. J.-G. Han and J. A. Morales. A theoretical investigation on fullerene-like phosphorus clusters. Chem. Phys. Lett., 2004, 396(1-3), 27-33. https://doi.org/10.1016/j.cplett.2004.07.107

    Article  ADS  CAS  Google Scholar 

  35. S. Böcker and M. Häser. Covalent structures of phosphorus: A comprehensive theoretical study. Z. Anorg. Allg. Chem., 1995, 621(2), 258-286. https://doi.org/10.1002/zaac.19956210215

    Article  Google Scholar 

  36. L. Guo, H. Wu, and Z. Jin. First principles study of the evolution of the properties of neutral and charged phosphorus clusters. J. Mol. Struct.: THEOCHEM, 2004, 677(1-3), 59-66. https://doi.org/10.1016/j.theochem.2004.02.014

    Article  CAS  Google Scholar 

  37. S. Mahtout, N. Amatousse, and F. Rabilloud. Structural, electronic and magnetic properties of Pn+1 and FePn (n = 1–14) clusters. Comput. Theor. Chem., 2017, 1122, 16-26. https://doi.org/10.1016/j.comptc.2017.10.010

    Article  CAS  Google Scholar 

  38. S. V. Lepeshkin, V. S. Baturin, Y. A. Uspenskii, and A. R. Oganov. Method for simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions. J. Phys. Chem. Lett., 2019, 10(1), 102-106. https://doi.org/10.1021/acs.jpclett.8b03510

    Article  CAS  PubMed  Google Scholar 

  39. L. Sai, X. Huang, X. Liang, X. Wu, R. Shi, and D. Wu. Structural evolution of medium-sized phosphorus clusters (P20–P36) from ab initio global search. J. Clust. Sci., 2020, 31(3), 567-574. https://doi.org/10.1007/s10876-019-01754-x

    Article  CAS  Google Scholar 

  40. D. V. Rybkovskiy, S. V. Lepeshkin, V. S. Baturin, A. A. Mikhailova, and A. R. Oganov. Phosphorus nanoclusters and insight into the formation of phosphorus allotropes. Nanoscale, 2023, 15(3), 1338-1346. https://doi.org/10.1039/d2nr06523a

    Article  CAS  PubMed  Google Scholar 

  41. M. Aykol, J. W. Doak, and C. Wolverton. Phosphorus allotropes: Stability of black versus red phosphorus re-examined by means of the van der Waals inclusive density functional method. Phys. Rev. B, 2017, 95(21), 214115. https://doi.org/10.1103/physrevb.95.214115

    Article  ADS  CAS  Google Scholar 

  42. P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24), 17953-17979. https://doi.org/10.1103/physrevb.50.17953

    Article  ADS  Google Scholar 

  43. G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47(1), 558-561. https://doi.org/10.1103/physrevb.47.558

    Article  ADS  CAS  Google Scholar 

  44. G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3), 1758-1775. https://doi.org/10.1103/physrevb.59.1758

    Article  ADS  CAS  Google Scholar 

  45. J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), 3865-3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  ADS  CAS  PubMed  Google Scholar 

  46. J. Moellmann and S. Grimme. DFT-D3 study of some molecular crystals. J. Phys. Chem. C, 2014, 118(14), 7615-7621. https://doi.org/10.1021/jp501237c

    Article  CAS  Google Scholar 

  47. M. Methfessel and A. T. Paxton. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 1989, 40(6), 3616-3621. https://doi.org/10.1103/physrevb.40.3616

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The work was supported by grant No. 22-22-00555 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Rybkovskiy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 122362.https://doi.org/10.26902/JSC_id122362

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybkovskiy, D.V., Lepeshkin, S.V., Mikhailova, A.A. et al. Structure and Stability of Phosphorus Nanoclusters in a Wide Composition Range (P17–P220). J Struct Chem 65, 331–340 (2024). https://doi.org/10.1134/S0022476624020112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020112

Keywords

Navigation