Skip to main content
Log in

Synthesis, Supramolecular Insight, Hirshfeld Surface Analyses and Magnetic Properties of Two Lanthanide Complexes of 1,8-naphthalene Dicarboxylate

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two isostructural mononuclear complexes of lanthanides (Ln = La and Pr) constructed from 1,8-naphthalene dicarboxylate (NDC) and 1,10-phenanthroline (Phen) as auxiliary ligand are reported. Both the complexes were formed through an in situ hydrolytic ring opening reaction of 1,8-naphthalic anhydride with Phen ligands. 3D supramolecular structures are observed which are guided by different weak interactions. The crystal structures of both the complexes were determined by single crystal X-ray diffraction. The room temperature photoluminescence studies, carried out in the powder state displayed three noticeable peaks from excited (3PJ; J = 2, 1, and 0) to ground state (3H4) at ~464 nm, 497 nm, and 538 nm, respectively, under UV excitation. Temperature dependent dc susceptibility (χ = M/H) as a function of temperature is investigated where Pr-complex shows antiferromagnetic behaviour. The Hirshfeld surface analysis of the two complexes is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. R. Jastrząb, M. Nowak, M. Skrobańska, A. Tolińska, M. Zabiszak, M. Gabryel, Ł. Marciniak, and M. T. Kaczmarek. DNA as a target for lanthanide(III) complexes influence. Coord. Chem. Rev., 2019, 382, 145-159. https://doi.org/10.1016/j.ccr.2018.12.018

    Article  CAS  Google Scholar 

  2. J. Wu, H. Liu, Y. Yang, H. Wang, and M. A. Yang. β-Diketone-europium(III) complex-based time gated luminescence probe for selective visualization of peroxynitrite in living cells. Opt. Mater., 2018, 77, 170. https://doi.org/10.1016/j.optmat.2018.01.032

    Article  ADS  CAS  Google Scholar 

  3. S.-N. Zhao, G. Wang, D. Poelman, and P. Voort. Luminescent lanthanide MOFs: A unique platform for chemical sensing. Materials, 2018, 11(4), 572. https://doi.org/10.3390/ma11040572

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. X.-L. Yu, D. I. Pavlov, A. A. Ryadun, A. S. Potapov, and V. P. Fedin. Synthesis, crystal structure, and luminescence of the one-dimensional lanthanum(III) coordination polymer with 2,6-bis (3,5-dicarboxyphenoxy)pyridine. J. Struct. Chem., 2022, 63(12), 2028-2036. https://doi.org/10.1134/S0022476622120149

    Article  CAS  Google Scholar 

  5. R. F. Li, R. H. Li, X. F. Liu, X.-H. Chang, and X. Feng. Lanthanide complexes based on a conjugated pyridine carboxylate ligand: Structures, luminescence and magnetic properties. RSC Adv., 2020, 10, 6192. https://doi.org/10.1039/C9RA10975G

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. Wang, D. Zhou, Y. N. Chen, J. J. Li, H. X. Zhang, Y. L. Zhao, and H. B. Chu. Crystal structure and photoluminescence of europium, terbium and samarium compounds with halogen-benzoate and 2,4,6-tri(2-pyridyl)-s-triazine. J. Lumin., 2016, 177, 22. https://doi.org/10.1016/j.jlumin.2016.04.024

    Article  ADS  CAS  Google Scholar 

  7. E. A. Ivanova, K. S. Smirnova, I. P. Pozdnyakov, A. S. Potapov, and E. V. Lider. Synthesis, crystal structures, and luminescence properties of lanthanide(III) complexes with 1-(1H-benzimidazol-1-yl-methyl)-1H-benzotriazole. Inorg. Chim. Acta, 2023, 557, 121697. https://doi.org/10.1016/j.ica.2023.121697

    Article  CAS  Google Scholar 

  8. E. A. Ivanova, K. S. Smirnova, I. P. Pozdnyakov, A. S. Potapov, and E. V. Lider. Photoluminescent lanthanide(III) coordination polymers with bis(1,2,4-triazol-1-yl)methane linker. Inorganics, 2023, 11, 317. https://doi.org/10.3390/inorganics11080317

    Article  CAS  Google Scholar 

  9. S. L. Dhania, A. Chauhan, and R. Langyan. Synthesis, characterization and photoluminescent properties of Eu(III) complexes with 5-hydroxy-2-hydroxymethyl-4H-4-pyranone and N,N′-donor heterocyclic coligands. Rare Met., 2021, 40, 1118. https://doi.org/10.1007/s12598-020-01387-4

    Article  CAS  Google Scholar 

  10. R. Langyan, A. Chauhan, S. Lohra, and S. L. Dhania. Judd-Ofelt analysis of some novel Eu3+ complexes featuring Kojic acid and N,N′-donor ligands. J. Photochem. Photobiol. A, 2020, 401, 112752. https://doi.org/10.1016/j.jphotochem.2020.112752

    Article  CAS  Google Scholar 

  11. H. Lan, R. Yang, L. Yang, P. Zhu, L. Wang, Y. Yu, and D. Wang. Lanthanide complexes based on the linear bifunctional ligand: Synthesis, structure regulation and magnetic properties. Inorg. Chim. Acta, Rev., 2020, 508, 119593. https://doi.org/10.1016/j.ica.2020.119593

    Article  CAS  Google Scholar 

  12. A. Chauhan, S. Saini, R. Kumar, D. Kumar, and R. Langyan. Luminescence features of mononuclear Sm(III) complexes with heterocyclic ligands. Optik, 2021, 231, 166500. https://doi.org/10.1016/j.ijleo.2021.166500

    Article  ADS  CAS  Google Scholar 

  13. J.-H. Jia, Q.-W. Li, Y.-C. Chen, J.-L. Liu, and M.-L. Tong. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances, and magneto-luminescent studies. Coord. Chem. Rev., 2019, 378, 365. https://doi.org/10.1016/j.ccr.2017.11.012

    Article  CAS  Google Scholar 

  14. T. A. Bazhenova, I. A. Yakushev, K. A. Lyssenko, O. V. Maximova, V. S. Mironov, Y. V. Manakin, A. B. Kornev, A. N. Vasiliev, and E. B. Yagubskii. Ten-coordinate lanthanide [Ln(HL)(L)] complexes (Ln = Dy, Ho, Er, Tb) with pentadentate N3O2-type Schiff-base ligands: Synthesis, structure and magnetism. Magnetochemistry, 2020, 6(4), 60. https://doi.org/10.3390/magnetochemistry6040060

    Article  CAS  Google Scholar 

  15. A. K. Bar, P. Kalita, M. K. Singh, G. Rajaraman, and V. Chandrasekhar. Low-coordinate mononuclear lanthanide complexes as molecular nanomagnets. Coord. Chem. Rev., 2018, 367, 163. https://doi.org/10.1016/j.ccr.2018.03.022

    Article  CAS  Google Scholar 

  16. M. N. Leuenberger and D. Loss. Quantum computing in molecular magnets. Nature, 2001, 410, 789. https://doi.org/10.1038/35071024

    Article  ADS  CAS  PubMed  Google Scholar 

  17. F. Troiani and M. Affronte. Molecular spins for quantum information technologies. Chem. Soc. Rev., 2011, 40, 3119. https://doi.org/10.1039/C0CS00158A

    Article  CAS  PubMed  Google Scholar 

  18. S. G. Reis, M. Briganti, D. O. T. A. Martins, H. Akpinar, S. Calancea, G. P. Guedes, S. Soriano, M. Andruh, R. A. A. Cassaro, P. M. Lahti, F. Totti, and M. G. F. Vaz. First coordination compounds based on a bis(imino nitroxide) biradical and metal ions: Synthesis, crystal structures and magnetic properties. Dalton Trans., 2016, 45(7), 2936-2944. https://doi.org/10.1039/c5dt04469c

    Article  CAS  PubMed  Google Scholar 

  19. J. Ruiz, G. Lorusso, M. Evangelisti, E. K. Brechin, S. J. A. Pope, and E. Colacio. Closely-related ZnII2LnIII2 complexes (LnIII = Gd, Yb) with either magnetic refrigerant or luminescent single-molecule magnet properties. Inorg. Chem., 2014, 53, 3586. https://doi.org/10.1021/ic403097s

    Article  CAS  PubMed  Google Scholar 

  20. M. P. Dandekar, S. B. Itankar, S. B. Kondawar, D. V. Nandanwar, and P. Koinkar. Photoluminescent electrospun europium complex Eu(TTA)3phen embedded polymer blends nanofibers. Opt. Mater., 2018, 85, 483. https://doi.org/10.1016/j.optmat.2018.09.019

    Article  ADS  CAS  Google Scholar 

  21. Y. Lin, J. Zhou, Z. Qiu, W. Zhou, J. Zhang, C. Li, L. Yu, and S. Lian. To tune europium valence by controlling the composition in diphase silicate phosphors. J. Rare Earths, 2018, 36, 1015. https://doi.org/10.1016/j.jre.2018.04.004

    Article  CAS  Google Scholar 

  22. X. Yu, A. A. Ryadun, D. I. Pavlov, T. Y. Guselnikova, A. S. Potapov, and V. P. Fedin. Highly luminescent lanthanide metal-organic frameworks with tunable color for nanomolar detection of iron(III), ofloxacin and gossypol and anti-counterfeiting applications. Angew. Chem., Int. Ed., 2023, 28, e202306680. https://doi.org/10.1002/anie.202306680

    Article  Google Scholar 

  23. R. N. Soek, C. M. Ferreira, F. S. Santana, D. L. Hughes, G. Poneti, R. R. Ribeiro, and F. S. Nunes. Structure and magnetic properties of two new lanthanide complexes with the 1-((E)-2-pyridinylmethylidene)semicarbazone ligand. J. Mol. Struct., 2019, 1184, 254-261. https://doi.org/10.1016/j.molstruc.2019.02.036

    Article  ADS  CAS  Google Scholar 

  24. S. Su, S. Wang, X. Song, S. Song, C. Qin, M. Zhu, Z. Hao, S. Zhao, and H. Zhang. Syntheses, structures, photoluminescence, and magnetic properties of (3,6)- and 4-connected lanthanide metal–organic frameworks with a semirigid tricarboxylate ligand. Dalton Trans., 2012, 41(16), 4772. https://doi.org/10.1039/c2dt12346k

    Article  CAS  PubMed  Google Scholar 

  25. J. K. Nath and R. Borah. A lanthanide cluster formed by fixing atmospheric CO2 to carbonate: A molecular magnetic refrigerant and photoluminescent material. J. Chem. Sci., 2023, 135, 58. https://doi.org/10.1007/s12039-023-02176-z

    Article  CAS  Google Scholar 

  26. L. L. Cai, Y. T. Hu, Y. Li, K. Wang, X. Q. Zhang, G. Muller, X. M. Li, and G. X. Wang. Solid-state luminescence properties, Hirshfeld surface analysis and DFT calculations of mononuclear lanthanide complexes (Ln = EuIII, GdIII, TbIII, DyIII) containing 4′-phenyl-2,2′:6′,2″terpyridine. Inorg. Chim. Acta, 2019, 489, 85-92. https://doi.org/10.1016/j.ica.2019.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. P. C. Campello, E. Palma, I. Correia, P. M. R. Paulo, A. Matos, J. Rino, J. Coimbra, D. Gambino, A. Paulo, and F. Marques. Lanthanide complexes with phenanthroline-based ligands: insights into cell death mechanisms obtained by microscopy techniques. Dalton Trans., 2019, 48, 4611. https://doi.org/10.1039/C9DT00640K

    Article  CAS  PubMed  Google Scholar 

  28. J. K. Nath, A. M. Kirillov, and J. B. Baruah. Unusual solvent-mediated hydrolysis of dicarboxylate monoester ligands in copper(II) complexes toward simultaneous crystallization of new dicarboxylate derivatives. RSC Adv., 2014, 4, 47876. https://doi.org/10.1039/C4RA05776G

    Article  ADS  CAS  Google Scholar 

  29. J. K. Nath, Y. Lan, A. K. Powell, and J. B. Baruah. Effect of ancillary ligands in hydrolysis of 1,8-naphthalic anhydride for synthesis of metallacycles of Co2+, Ni2+, and Zn2+. Z. Anorg. Allg. Chem., 2013, 639, 2250. https://doi.org/10.1002/zaac.201300255Z

    Article  CAS  Google Scholar 

  30. J. K. Nath. Syntheses and crystal structures of dinuclear metallacycles of Mn(II), Co(II), Ni(II), Cu(II) and Cd(II) of 1,8-naphthalene dicarboxylate exhibiting dihydrogen contact. J. Struct. Chem., 2023, 64(6), 112067. https://doi.org/10.1134/S0022476623060069

    Article  CAS  Google Scholar 

  31. Bruker. SMART, APEX2. Madison, Wisconsin, USA: Bruker AXS Inc., 2012.

  32. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  33. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, and P. A. Wood. Mercury 4.0: from visualization to analysis, design, and prediction. J. Appl. Crystallogr., 2020, 53, 226. https://doi.org/10.1107/S1600576719014092

    Article  CAS  Google Scholar 

  34. L. J. Farrugia. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr., 2012, 45, 849. https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  35. K. Brandenburg and M. Berndt. DIAMOND. Bonn, Germany: Crystal Impact GbR, 1999.

  36. S. A. Cotton and J. M. Harrowfield. Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, 2011.

  37. F. A. Mautner, F. Bierbaumer, R. C. Fischer, A. Torvisco, R. Vicente, M. Font-Bardía, À. Tubau, S. Speed, and S. S. Massoud. Diverse coordination numbers and geometries in pyridyl adducts of lanthanide(III) complexes based on β-diketonate. Inorganics, 2021, 9(10), 74. https://doi.org/10.3390/inorganics9100074

    Article  CAS  Google Scholar 

  38. S. S. Shapovalov, O. G. Tikhonova, M. O. Grigor′eva, I. V. Skabitskii, and N. P. Simonenko. Lanthanide complexes based on 1,3-dimethylimidazolium-4-carboxylate: Syntheses and structures. Russ. J. Coord. Chem., 2019, 45(11), 799-803. https://doi.org/10.1134/s1070328419110071

    Article  CAS  Google Scholar 

  39. X.-J. Zheng, L.-P. Jin, S. Gao, and S.-Z. Lu. New ternary lanthanide coordination polymers of 1,4-naphthalenedicarboxylate with 1,10-phenanthroline. Inorg. Chem. Commun., 2005, 8(1), 72-75. https://doi.org/10.1016/j.inoche.2004.11.005

    Article  CAS  Google Scholar 

  40. P. Nandal, R. Kumar, A. Khatkar, S. P. Khatkar, and V. B. Taxak. Synthesis, characterization, enhanced photoluminescence, antimicrobial and antioxidant activities of novel Sm(III) complexes containing 1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone and nitrogen containing ancillary ligands. J. Mater Sci: Mater Electron., 2016, 27, 878. https://doi.org/10.1007/s10854-015-3829-y

    Article  CAS  Google Scholar 

  41. M. D. Regulacio, M. H. Pablico, J. A. Vasquez, P. N. Myers, S. Gentry, M. Prushan, S.-W. T.-Chang, and S. L. Stoll. Luminescence of Ln(III) dithiocarbamate complexes (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy). Inorg. Chem., 2008, 47, 1512. https://doi.org/10.1021/ic701974q

    Article  CAS  PubMed  Google Scholar 

  42. Y. Zhang, J. Ji, J.-D. Fu, J.-W. Cheng, and Y.-H. Wen. Cooperative assembly of coexistent lanthanide–carboxylate chain and layer in a (4,6)-connected network. Inorg. Chem. Commun., 2013, 35, 181-185. https://doi.org/10.1016/j.inoche.2013.06.026

    Article  CAS  Google Scholar 

  43. M. O. Butun. Sensitization of Pr(III) ions in porous material via an antenna effect. J. Balikesir Univ. Inst. Sci. Technol., 2017, 19, 50-57. https://doi.org/10.25092/baunfbed.363760

    Article  Google Scholar 

  44. E. A. Mikhalyova, O. V. Khomenko, K. S. Gavrilenko, V. P. Dotsenko, A. W. Addison, and V. V. Pavlishchuk. Absorption and excitation-modulated luminescence of Pr3+, Nd3+, and Lu3+ compounds with dianions of tetrafluoroterephthalic and camphoric acids. ACS Omega, 2019, 4, 2669. https://doi.org/10.1021/acsomega.8b02388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer17. Perth, Australia: University of Western Australia, 2017.

  46. L. R. de Almeida, J. P. S. Carvalho, H. B. Napolitano, S. S. Oliveira, A. J. Camargo, A. S. Figueredo, G. L. B. de Aquino, and V. H. Carvalho-Silva. Contribution of directional dihydrogen interactions in the supramolecular assembly of single crystals: Quantum chemical and structural investigation of C17H17N3O2 azine. Cryst. Growth Des., 2017, 10, 5145. https://doi.org/10.1021/acs.cgd.7b00585

    Article  CAS  Google Scholar 

  47. L. J. Prins, D. N. Reinhoudt, and P. Timmerman. Noncovalent synthesis using hydrogen bonding. Angew. Chem., Int. Ed., 2001, 40, 2382. https://doi.org/10.1002/1521-3773(20010702)40:13%3c2382::aid-anie2382%3e3.0.co;2-g

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Nath.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 119099.https://doi.org/10.26902/JSC_id119099

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, J.K., Borah, R. Synthesis, Supramolecular Insight, Hirshfeld Surface Analyses and Magnetic Properties of Two Lanthanide Complexes of 1,8-naphthalene Dicarboxylate. J Struct Chem 65, 217–229 (2024). https://doi.org/10.1134/S002247662402001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662402001X

Keywords

Navigation