Skip to main content
Log in

Synthesis, Crystal Structure, Optical and Antimicrobial Properties of 2-Nitrobenzyl Triphenylphosphonium Tetrabromocobaltate(II)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel organic-inorganic hybrid multifunctional crystalline material, 2-nitrobenzyl triphenylphosphonium tetrabromocobaltate(II) [2-NO2BzTPP]2[CoBr4](1), has been synthesized using [2-NO2BzTPP]Br and CoBr2 in methanol solution acidified with hydrobromic acid and characterized using single-crystal X-ray diffraction and spectroscopic techniques. The single-crystal X-ray diffraction analysis showed that the hybrid [2-NO2BzTPP]2[CoBr4](1) belongs to the triclinic space group \(P\bar{1}\) with a = 11.1815(17) Å, b = 12.954(2) Å, c = 19.426(3) Å, α = 99.312(5)°, β = 100.654(5)°, γ 113.746(5)°, V = 2442.3(7) Å3, Z = 2, which consists of two [2-NO2BzTPP]+ cations and a [CoBr4]2– anion. The Co(II) ion in the [CoBr4]2– anion is coordinated to four Br ions and has a tetrahedral geometry. The C–H⋯O hydrogen bonds, O⋯π and O⋯Br interactions in the crystal can favor crystal stacking and stabilization. The bulk phase purity, homogeneity, and morphology of the desired compound are checked using powder XRD, and SEM-EDX analysis. The hybrid crystal showed an emission peak near 468 nm at room temperature under the excitation of UV light at 241 nm. The low energy gap (2.85 eV) indicated that the crystal was a semiconductor suitable for optical applications. Furthermore, the compound exhibited good bactericidal activity against E. coli and S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. Z. Wang and X. Huang. Luminescent organic-inorganic hybrid metal halides: An emerging class of stimuli-responsive materials. Chem. - Eur. J., 2022, 28(37), e202200609. https://doi.org/10.1002/chem.202200609

    Article  Google Scholar 

  2. M. Faustini, L. Nicole, E. Ruiz-Hitzky, and C. Sanchez. History of organic–inorganic hybrid materials: Prehistory, art, science, and advanced applications. Adv. Funct. Mater., 2018, 28(27). https://doi.org/10.1002/adfm.201704158

    Article  Google Scholar 

  3. Z. Aloui, M. Essid, G. Bruno, G. Bella, A. Santoro, and S. Abid. A new Cu-halide organic-inorganic hybrid compound′s synthesis, single-crystal X-ray diffraction, vibrational investigations, optical characteristics, and DFT calculation: (C12H20N2)CuCl4. Mater. Today Commun., 2023, 36, 106484. https://doi.org/10.1016/j.mtcomm.2023.106484

    Article  CAS  Google Scholar 

  4. T. Zhang, K. Xu, J. Li, L. He, D.-W. Fu, Q. Ye, and R.-G. Xiong. Ferroelectric hybrid organic–inorganic perovskites and their structural and functional diversity. Natl. Sci. Rev., 2023, 10(2), nwac240. https://doi.org/10.1093/nsr/nwac240

    Article  PubMed  PubMed Central  Google Scholar 

  5. M. Khalfa, A. Oueslati, K. Khirouni, M. Gargouri, A. Rousseau, J. Lhoste, J.-F. Bardeau, and G. Corbel. Synthesis, structural and electrical characterization of a new organic inorganic bromide: [(C3H7)4N]2CoBr4. RSC Adv., 2022, 12(5), 2798-2809. https://doi.org/10.1039/d1ra07965d

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Z. Liang, C. Tian, X. Li, L. Cheng, S. Feng, L. Yang, Y. Yang, and L. Li. Organic–inorganic lead halide perovskite single crystal: From synthesis to applications. Nanomaterials, 2022, 12(23), 4235. https://doi.org/10.3390/nano12234235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. H. He, J. Zhao, and Q. L. Liu. High-efficiency and broad-spectrum emitting organic-inorganic metal halide photoluminescent materials. Chin. J. Inorg. Chem., 2022, 38(7), 1209-1225.

  8. L. Kang and Z. Lin. Regulation strategy of white emission from organic–inorganic hybrid metal halide perovskites. Inorg. Chem. Front., 2023, 10(1), 13-36. https://doi.org/10.1039/d2qi02076a

    Article  CAS  Google Scholar 

  9. Z. Wei, Y. Zhao, J. Jiang, W. Yan, Y. Feng, and J. Ma. Research progress on hybrid organic–inorganic perovskites for photo-applications. Chin. Chem. Lett., 2020, 31(12), 3055-3064. https://doi.org/10.1016/j.cclet.2020.05.016

    Article  CAS  Google Scholar 

  10. J. Beena, A. S. Jebamalar, S. Sindhusha, and T. Kamalesh. Growth, characterization and optical limiting activity of third-order nonlinear optical material: Hexaaqua cobalt(II) bis(p-Toluenesulfonate) (PTCO). J. Mater. Sci. Mater. Electron., 2022, 33(25), 20424-20438. https://doi.org/10.1007/s10854-022-08858-7

    Article  CAS  Google Scholar 

  11. H. Jin, J. Li, J. Iocozzia, X. Zeng, P. Wei, C. Yang, N. Li, Z. Liu, J. H. He, T. Zhu, J. Wang, Z. Lin, and S. Wang. Hybrid organic–inorganic thermoelectric materials and devices. Angew. Chem., Int. Ed., 2019, 58(43), 15206-15226. https://doi.org/10.1002/anie.201901106

    Article  CAS  Google Scholar 

  12. Z. Cai, X.-N. Hua, M. Liu, J. Chen, Z. Wang, X. Liu, Y. Zhang, X. Zhang, S. Xiao, and B. Sun. Thermally induced dielectric transition in an organic-inorganic hybrid material (TEACCl)2CuBr4. J. Mol. Struct., 2023, 1288, 135772. https://doi.org/10.1016/j.molstruc.2023.135772

    Article  CAS  Google Scholar 

  13. J. Song, A. S. Vikulina, B. V. Parakhonskiy, and A. G. Skirtach. Hierarchy of hybrid materials. Part-II: The place of organics-on-inorganics in it, their composition and applications. Front. Chem., 2023, 11, 1078840. https://doi.org/10.3389/fchem.2023.1078840

    Article  PubMed  PubMed Central  Google Scholar 

  14. S. Dgachi, A. M. Ben Salah, M. M. Turnbull, T. Bataille, and H. Naïli. Investigations on (C6H9N2)2[MIIBr4] halogenometallate complexes with MII = Co, Cu and Zn: Crystal structure, thermal behavior and magnetic properties. J. Alloys Compd., 2017, 726, 315-322. https://doi.org/10.1016/j.jallcom.2017.07.278

    Article  CAS  Google Scholar 

  15. E. Jaziri, H. Louis, C. Gharbi, T. O. Unimuke, E. C. Agwamba, G. E. Mathias, W. Fugita, C. Ben Nasr, and L. Khedhiri. Antispasmodic activity of novel 2,4-dichloroanilinium perchlorate hybrid material: X-ray crystallography, DFT studies and molecular docking approach. J. Mol. Struct., 2023, 1274, 134440. https://doi.org/10.1016/j.molstruc.2022.134440

    Article  CAS  Google Scholar 

  16. N. Mhadhbi, S. Saïd, S. Elleuch, and H. Naïli. Crystal structure, spectroscopy, DFT studies and thermal characterization of cobalt(II) complex with 2-protonated aminopyridinium cation as ligand. J. Mol. Struct., 2016, 1108, 223-234. https://doi.org/10.1016/j.molstruc.2015.12.025

    Article  ADS  CAS  Google Scholar 

  17. H. Souissi, O. Taktak, M. Khalfa, A. Oueslati, S. Kammoun, and M. Gargouri. Experimental and optical studies of the new organic inorganic bromide: [(C3H7)4N]2CoBr4. Opt. Mater., 2022, 129, 112513. https://doi.org/10.1016/j.optmat.2022.112513

    Article  CAS  Google Scholar 

  18. I. Dakhlaoui, K. Karoui, F. Hajlaoui, N. Audebrand, T. Roisnel, and F. Jomni. [(CH3)3N(CH2)2Br]2[CoBr4] halogenometallate complex: Crystal structure, high-temperature reversible phase transition, electrical and optical properties. J. Mol. Struct., 2021, 1231, 129684. https://doi.org/10.1016/j.molstruc.2020.129684

    Article  CAS  Google Scholar 

  19. M. Tahenti, N. Issaoui, T. Roisnel, H. Marouani, O. Al-Dossary, and A. S. Kazachenko. Self-assembly of a new cobalt complex, (C6H14N2)3[CoCl4]Cl: Synthesis, empirical and DFT calculations. J. King Saud Univ., Sci., 2022, 34(2), 101807. https://doi.org/10.1016/j.jksus.2021.101807

    Article  Google Scholar 

  20. S. Dgachi, M. M. Turnbull, F. Mezzadri, A. J. Norquist, A. Soran, J. Boonmak, G. Nemes, and H. Naïli. Polymorphism in the metal–organic hybrid (PhCH2NEt3)2[CoBr4]: Synthesis, crystal structures and physico-chemical characterizations. Inorg. Chim. Acta, 2021, 514, 119997. https://doi.org/10.1016/j.ica.2020.119997

    Article  CAS  Google Scholar 

  21. H. Tllili, S. Walha, S. Elleuch, B. Fares Ali, and H. Naïli. Structural, vibrational, DFT and optical studies of a new non-centrosymmetric hybrid material (C4H12N2)[CoBr4]. J. Mol. Struct., 2018, 1152, 303-310. https://doi.org/10.1016/j.molstruc.2017.09.096

    Article  ADS  CAS  Google Scholar 

  22. W.-Q. Chen, M.-H. Feng, D.-D. Zhou, Y.-Q. Peng, S. Han, X.-P. Liu, L.-M. Yang, J.-R. Zhou, and C.-L. Ni. Two tetrachlorocobaltate(II) salts with substituted benzyl triphenylphosphonium: Syntheses, crystal structures, weak interactions, and magnetic properties. Synth. React. Inorg., Met. Nano-Met. Chem., 2012, 42(6), 811-817. https://doi.org/10.1080/15533174.2011.617349

    Article  CAS  Google Scholar 

  23. X. Chen, S.-L. Dai, Z.-P. Cheng, L.-B. Liang, S. Han, J.-F. Liu, J.-R. Zhou, L.-M. Yang, and C.-L. Ni. Syntheses, crystal structures, and magnetic properties of two hybrid materials self-assembly from tetra(isothiocyanate)cobalt(II) anion and substituted benzyl triphenylphosphinium. Synth. React. Inorg., Met. Nano-Met. Chem., 2012, 42(7), 987-993. https://doi.org/10.1080/15533174.2012.680114

    Article  CAS  Google Scholar 

  24. M. Evecen, H. Tanak, F. Tinmaz, N. Dege, and İ. Özer İlhan. Experimental (XRD, IR and NMR) and theoretical investigations on 1-(2-nitrobenzoyl)3,5-bis(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole. J. Mol. Struct., 2016, 1126, 117-126. https://doi.org/10.1016/j.molstruc.2016.01.069

    Article  ADS  CAS  Google Scholar 

  25. P. Sen, G. Y. Atmaca, A. Erdogmus, S. D. Kanmazalp, N. Dege, and S. Z. Yildiz. Peripherally tetra-benzimidazole units-substituted zinc(II) phthalocyanines: Synthesis, characterization and investigation of photophysical and photochemical properties. J. Lumin., 2018, 194, 123-130. https://doi.org/10.1016/j.jlumin.2017.10.022

    Article  ADS  CAS  Google Scholar 

  26. S. Kansız, A. M. Qadir, N. Dege, and S. H. Faizi. Two new copper (II) carboxylate complexes based on N,N,N′,N′-tetramethylethyleneamine: Synthesis, crystal structures, spectral properties, DFT studies and Hirshfeld surface analysis. J. Mol. Struct., 2021, 1230, 129916. https://doi.org/10.1016/j.molstruc.2021.129916

    Article  CAS  Google Scholar 

  27. A. Jezuita, H. Szatylowicz, and T. M. Krygowski. How amino and nitro substituents affect the aromaticity of benzene ring. Chem. Phys. Lett., 2020, 753, 137567. https://doi.org/10.1016/j.cplett.2020.137567

    Article  CAS  Google Scholar 

  28. R. Broos and M. Anteunis. A simplified wittig synthesis of substituted styrenes. Synth. Commun., 1976, 6(1), 53-57. https://doi.org/10.1080/00397917608062133

    Article  CAS  Google Scholar 

  29. SMART, Brucker molecular analysis research tool, Ver. 6.1. Madison, WI, USA: Bruker AXS, 2000.

  30. SAINTPlus, Data reduction and correction program, Ver. 6.01. Madison, WI, USA: Bruker AXS, 2000.

  31. G. M. Shelddrick. SHELXTL, Structure determination software programs, Ver. 6.1.0. Madison, WI, USA: Bruker AXS, 2000.

  32. R. Cruickshank, J. P. Duguid, B. P. Marmion, and R. H. A. Swain. Medical Microbiology, 12th ed. London, England: Churchill Livingstone, 1975, Vol. 2.

  33. C. H. Collins and P. M. Lyne. Microbiological methods, 4th ed. London, England: Butterworth, 1976.

  34. D. Braga, G. R. Desiraju, J. S. Miller, A. G. Orpen, and S. (Sally) L. Price. Innovation in crystal engineering. CrystEngComm, 2002, 4(83), 500-509. https://doi.org/10.1039/b207466b

    Article  CAS  Google Scholar 

  35. T. Korenaga, H. Tanaka, T. Ema, and T. Sakai. Intermolecular oxygen atom⋯π interaction in the crystal packing of chiral amino alcohol bearing a pentafluorophenyl group. J. Fluor. Chem., 2003, 122(2), 201-205. https://doi.org/10.1016/s0022-1139(03)00089-7

    Article  CAS  Google Scholar 

  36. L. E. Alkhimova, A. V. Sharov, T. M. Burkhanova, M. G. Babashkina, and D. A. Safin. Ambroxol: Insight into the crystal structure, Hirshfeld surface analysis and computational study. Polycyclic Aromat. Compd., 2023, 43(3), 2599-2617. https://doi.org/10.1080/10406638.2022.2049323

    Article  CAS  Google Scholar 

  37. B. Zeytuncu, E. Çakmakçı, and M. V. Kahraman. Allyl phosphonium salt-modified clay for photocured coatings: Influence on the properties of polyester acrylate-based coatings. Polym. Compos., 2015, 36(5), 946-954. https://doi.org/10.1002/pc.23015

    Article  CAS  Google Scholar 

  38. F. El Kalai, C. S. Abraham, S. Kansiz, A. Oulmidi, S. Muthu, J. C. Prasana, N. Dege, H. A. Abuelizz, R. Al-Salahi, N. Benchat, and K. Karrouchi. Synthesis, crystal structure, and computational investigations of 2-(2-(4-fluorophenyl)-2-oxoethyl)-6-methyl-5-(4-methylbenzyl)pyridazin-3(2H)-one as antiviral agent. Crystals, 2023, 13(7), 1098. https://doi.org/10.3390/cryst13071098

    Article  CAS  Google Scholar 

  39. K. Srishailam, A. Balakrishna, B. V. Reddy, and G. R. Rao. Insights into structural and vibrational characteristics of 1-methoxy-4-[2-(phenylsulfonyl)vinyl]benzene: An application of experimental vibrational spectroscopy and density functional theory. J. Mol. Struct., 2023, 1286, 135572. https://doi.org/10.1016/j.molstruc.2023.135572

    Article  CAS  Google Scholar 

  40. C. Wang, C. Fan, Z. Zhang, Z. Zhu, C. Wu, and T. Sun. Synthesis, crystal structure, spectral analysis, DFT calculations, docking studies, in vitro biological activity evaluation and in silico drug-likeness prediction of a novel L-xylose derivative. J. Mol. Struct., 2023, 1294, 136362. https://doi.org/10.1016/j.molstruc.2023.136362

    Article  CAS  Google Scholar 

  41. Y.-L. Xu, Y. Cai, J.-Y. Yu, Y. Xu, Y. Yang, S.-H. Fang, J.-R. Zhou, Y.-Z. Huang, and C.-L. Ni. Syntheses, crystal structures, antibacterial activities and non-linear optical properties based on DFT calculation of two substituted benzyl piperidinium salts tetrahalogenated copper(II). J. Mol. Struct., 2022, 1256, 132543. https://doi.org/10.1016/j.molstruc.2022.132543

    Article  CAS  Google Scholar 

  42. J. Pan and B. Guan. Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylammonium bromide. J. Hazard. Mater., 2010, 183(1-3), 341-346. https://doi.org/10.1016/j.jhazmat.2010.07.030

    Article  CAS  PubMed  Google Scholar 

  43. K. P. Begaum, T. Prabhu, S. Kaleeswaran, S. Kadaikunnan, G. Abbas, S. Muthu, İ. Kestek, A. A. Ağar, E. B. Poyraz, and N. Dege. Synthesis, crystal structure, static and dynamic properties, molecular structure, reactive sites, wavefunction and molecular docking of 1-(3-((4-(diethylamino)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one. J. Mol. Struct., 2023, 1294, 136348. https://doi.org/10.1016/j.molstruc.2023.136348

    Article  CAS  Google Scholar 

  44. J. Zhang, T. Li, J.-Y. Liang, L.-S. Chen, Y.-Y. Zeng, L.-M. Yang, J.-R. Zhou, and C.-L. Ni. Synthesis, crystal structure, vibrational spectra, optical properties of disubstituted benzyl triphenylphosphinium picrate: Experiment and DFT/TDDFT calculations. J. Mol. Struct., 2020, 1210, 127972. https://doi.org/10.1016/j.molstruc.2020.127972

    Article  CAS  Google Scholar 

  45. B. Lai, Y. Zhang, Z. Chen, P. Yang, Y. Zhou, and J. Wang. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles. Appl. Catal., B, 2014, 144, 816-830. https://doi.org/10.1016/j.apcatb.2013.08.020

    Article  CAS  Google Scholar 

  46. A. Abkari, I. Chaabane, and K. Guidara. Synthesis, crystal structure, spectroscopic characterization and optical properties of bis(4-acetylanilinium) tetrachlorocobalt(II). Phys. E, 2017, 86, 210-217. https://doi.org/10.1016/j.physe.2016.06.013

    Article  ADS  CAS  Google Scholar 

  47. B. M. P. Beebeejaun-Boodoo, R. Erasmus, and M. Rademeyer. Tetrahalometallate salts of N-(4-picolinium)-1,8-naphthalimide: Structures and solid-state fluorescence. CrystEngComm, 2018, 20(33), 4875-4887. https://doi.org/10.1039/c8ce00292d

    Article  CAS  Google Scholar 

  48. S.-S. Gao, J. Zhang, K. Yin, Y.-L. Chen, Y.-Z. He, T. Li, L.-S. Chen, Y.-Y. Zeng, W.-X. Zheng, C.-L. Ni, W. Liu, and Y.-M. Zhang. Syntheses, crystal structures, optical properties, antibacterial activity and DFT calculations of two substituted benzyl triphenylphosphinium picrates. J. Mol. Struct., 2022, 1263, 133178. https://doi.org/10.1016/j.molstruc.2022.133178

    Article  CAS  Google Scholar 

  49. Y. Xue, H. Xiao, and Y. Zhang. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci., 2015, 16(2), 3626-3655. https://doi.org/10.3390/ijms16023626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Project from Guangdong Province of China (No. 2016A010103025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. -L. Ni.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 121588.https://doi.org/10.26902/JSC_id121588

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.T., Huang, L., Wen, Z.M. et al. Synthesis, Crystal Structure, Optical and Antimicrobial Properties of 2-Nitrobenzyl Triphenylphosphonium Tetrabromocobaltate(II). J Struct Chem 65, 243–255 (2024). https://doi.org/10.1134/S0022476624020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020033

Keywords

Navigation