Skip to main content
Log in

Photoluminescent Mixed-Ligand Europium(III) Complex with 3,4-Dichloroisothiazole-5-Carboxylic Acid and 1,10-Phenanthroline

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structural characterization of 3,4-dichloroisothiazole-5-carboxylic acid is performed for the first time along with the preparation of the first coordination compound based on it - a mixed-ligand europium(III) complex with 3,4-dichloroisothiazole-5-carboxylic acid and 1,10-phenanthroline. The coordination compound is characterized by the elemental analysis, single crystal and powder X-ray diffraction (XRD), and IR spectroscopy. According to the single crystal XRD data, the obtained complex is a binuclear compound with the formula [Eu2L6(phen)2(H2O)2]·6H2O. Its structure corresponds to the Chinese lantern type. The isothiazole derivative exhibits both monodentate and bidentate-bridging coordinations binding europium ions. The photoluminescent properties of a polycrystalline sample of the complex are studied: the luminescence quantum yield is 23%, the excited state lifetime is 0.8 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. A. Dalal, K. Nehra, A. Hooda, D. Singh, P. Kumar, S. Kumar, R. S. Malik, and B. Rathi. Luminous lanthanide diketonates: Review on synthesis and optoelectronic characterizations. Inorg. Chim. Acta, 2023, 550, 121406. https://doi.org/10.1016/j.ica.2023.121406

    Article  CAS  Google Scholar 

  2. A. Hooda, A. Dalal, K. Nehra, P. Kumar, D. Singh, S. Kumar, R. S. Malik, R. Kumar, and P. Kumar. Mononuclear luminous β-diketonate Ln(III) complexes with heteroaromatic auxiliary ligands: Synthesis and luminescence characteristics. Luminescence, 2022, 37(11), 1921-1931. https://doi.org/10.1002/bio.4376

    Article  CAS  PubMed  Google Scholar 

  3. P. A. Demakov, A. A. Ryadun, and D. N. Dybtsev. Highly luminescent crystalline sponge: sensing properties and direct X-ray visualization of the substrates. Molecules, 2022, 27(22), 8055. https://doi.org/10.3390/molecules27228055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. A. Bryleva, A. V. Artem′ev, L. A. Glinskaya, V. Y. Komarov, A. S. Bogomyakov, M. I. Rakhmanova, and S. V. Larionov. A series of bis(2-phenethyl)dithiophosphinate-based Ln(III) complexes: Synthesis, magnetic and photoluminescent properties. Inorg. Chim. Acta, 2021, 516, 120097. https://doi.org/10.1016/j.ica.2020.120097

    Article  CAS  Google Scholar 

  5. Y. A. Bryleva, V. Y. Komarov, L. A. Glinskaya, A. V. Artem′ev, M. P. Davydova, M. I. Rakhmanova, and D. G. Samsonenko. Highly photo- and triboluminescent lanthanide(III) coordination polymers based on diphosphine dioxides containing azaheterocyclic linkers. New J. Chem., 2023, 47(21), 10446-10454. https://doi.org/10.1039/d3nj01119d

    Article  CAS  Google Scholar 

  6. Y. A. Bryleva, A. V. Artem′ev, L. A. Glinskaya, D. G. Samsonenko, M. I. Rakhmanova, M. P. Davydova, and K. M. Yzhikova. Eu(III) and Tb(III) complexes based on diphenyl(pyrimidin-2-yl)phosphine oxide: Synthesis, structure, and photoluminescent properties. J. Struct. Chem., 2021, 62(2), 265-276. https://doi.org/10.1134/s0022476621020116

    Article  CAS  Google Scholar 

  7. L. O. Tcelykh, A. A. Vashchenko, A. V. Medved′ko, Ł. Marciniak, A. E. Aleksandrov, A. S. Goloveshkin, L. S. Lepnev, E. V. Latipov, A. S. Burlov, and V. V. Utochnikova. Ytterbium complexes with 2-(tosylamino)-benzylidene-N-(2-halobenzoyl)-hydrazones for solution-processable NIR OLEDs. J. Mater. Chem. C, 2022, 10(4), 1371-1380. https://doi.org/10.1039/d1tc04600d

    Article  CAS  Google Scholar 

  8. R. G. Deghadi and G. G. Mohamed. Can new series of half-sandwich lanthanum(III), erbium(III), and ytterbium(III) complexes of organometallic ferrocenyl Schiff base ligands display biological activities as antibacterial and anticancer drugs? Comments Inorg. Chem., 2022, 42(6), 368-401. https://doi.org/10.1080/02603594.2022.2083608

    Article  CAS  Google Scholar 

  9. J. J. Santoyo-Flores and D. Páez-Hernández. Theoretical study of 8-hydroxyquinoline derivatives as potential antennas in lanthanide complexes: Photophysical properties and elucidation of energy transfer pathways. Int. J. Quantum Chem., 2022, 122(10). https://doi.org/10.1002/qua.26880

    Article  Google Scholar 

  10. P. A. Tanner, W. Thor, Y. Zhang, and K.-L. Wong. Energy transfer mechanism and quantitative modeling of rate from an antenna to a lanthanide ion. J. Phys. Chem. A, 2022, 126(41), 7418-7431. https://doi.org/10.1021/acs.jpca.2c03965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Hasegawa, H. Ohmagari, H. Tanaka, and K. Machida. Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli. J. Photochem. Photobiol., C, 2022, 50, 100484. https://doi.org/10.1016/j.jphotochemrev.2022.100484

    Article  CAS  Google Scholar 

  12. J. Pang, Z. Ke, T. Jiang, F. Tang, S. Zhang, and K. He. Synthesis and catalytic performance of wood cellulose nanofibers grafted with polylactic acid in rare-earth complexes based on tetrazole carboxylic acids. Int. J. Biol. Macromol., 2023, 253, 127218. https://doi.org/10.1016/j.ijbiomac.2023.127218

    Article  CAS  PubMed  Google Scholar 

  13. W. Hao, T. Huang, B. Jin, J. Zhang, J. Shen, and R. Peng. Rare-earth, nitrogen-rich, oxygen heterocyclic supramolecular compounds (Nd, Sm, and Eu): Synthesis, structure, and catalysis for ammonium perchlorate. J. Rare Earths, 2022, 40(3), 428-433. https://doi.org/10.1016/j.jre.2021.01.011

    Article  CAS  Google Scholar 

  14. E. A. Ivanova, K. S. Smirnova, I. P. Pozdnyakov, A. S. Potapov, and E. V. Lider. Synthesis, crystal structures, and luminescence properties of lanthanide(III) complexes with 1-(1H-benzimidazol-1yl-methyl)-1H-benzotriazole. Inorg. Chim. Acta, 2023, 557, 121697. https://doi.org/10.1016/j.ica.2023.121697

    Article  CAS  Google Scholar 

  15. E. A. Ivanova, K. S. Smirnova, I. P. Pozdnyakov, A. S. Potapov, and E. V. Lider. Photoluminescent lanthanide(III) coordination polymers with bis(1,2,4-triazol-1-yl)methane linker. Inorganics, 2023, 11(8), 317. https://doi.org/10.3390/inorganics11080317

    Article  CAS  Google Scholar 

  16. H. Yu, H. Wang, F. Shen, F. Li, Y. Zhang, X. Xu, and Y. Liu. Cyclodextrin-confined supramolecular lanthanide photoswitch. Small, 2022, 18(24). https://doi.org/10.1002/smll.202201737

    Article  PubMed  PubMed Central  Google Scholar 

  17. A. V. Artem′ev, N. K. Gusarova, S. F. Malysheva, O. N. Kazheva, G. G. Alexandrov, O. A. Dyachenko, and B. A. Trofimov. Synthesis and structural characterization of the first europium(III) pyridylphosphine complex, [Eu(N,N′,N″-2-Py3P)(NO3)3]. Mendeleev Commun., 2012, 22(6), 294-296. https://doi.org/10.1016/j.mencom.2012.11.004

    Article  CAS  Google Scholar 

  18. Food Safety Commission of Japan. Dichlobentiazox (Pesticides). Food Saf., 2020, 8(1), 6/7. https://doi.org/10.14252/foodsafetyfscj.d-20-00002

    Article  PubMed Central  Google Scholar 

  19. I. Jęśkowiak, S. Ryng, M. Świtalska, J. Wietrzyk, I. Bryndal, T. Lis, and M. Mączyński. The N′-substituted derivatives of 5-chloro-3-methylisothiazole-4-carboxylic acid hydrazide with antiproliferative activity. Molecules, 2019, 25(1), 88. https://doi.org/10.3390/molecules25010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Son, J. Kim, Y. Kim, S.-G. Chi, T. Kim, and J. Yu. Discovery of dioxo-benzo[b]thiophene derivatives as potent YAP-TEAD interaction inhibitors for treating breast cancer. Bioorg. Chem., 2023, 131, 106274. https://doi.org/10.1016/j.bioorg.2022.106274

    Article  CAS  PubMed  Google Scholar 

  21. Y. He, G. Xiao, G. Yu, Q. Song, H. Zhang, Z. Liu, Z. Tan, and Y. Deng. 2-(3-Hydroxybenzyl)benzo[d]isothiazol-3(2H)-one Mannich base derivatives as potential multifunctional anti-Alzheimer′s agents. Med. Chem. Res., 2021, 30(6), 1249-1264. https://doi.org/10.1007/s00044-021-02725-6

    Article  CAS  Google Scholar 

  22. T. Bosanac, R. O. Hughes, T. Engber, R. Devraj, A. Brearley, K. Danker, K. Young, J. Kopatz, M. Hermann, A. Berthemy, S. Boyce, J. Bentley, and R. Krauss. Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy. Brain, 2021, 144(10), 3226-3238. https://doi.org/10.1093/brain/awab184

    Article  PubMed  PubMed Central  Google Scholar 

  23. A. V. Sanches de Araújo, D. Valverde, S. Canuto, and A. C. Borin. Solvation structures and deactivation pathways of luminescent isothiazole-derived nucleobases: tzA, tzG, and tzI. J. Phys. Chem. A, 2020, 124(34), 6834-6844. https://doi.org/10.1021/acs.jpca.0c03398

    Article  CAS  PubMed  Google Scholar 

  24. A. R. Rovira, A. Fin, and Y. Tor. Expanding a fluorescent RNA alphabet: synthesis, photophysics and utility of isothiazole-derived purine nucleoside surrogates. Chem. Sci., 2017, 8(4), 2983-2993. https://doi.org/10.1039/c6sc05354h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. Cao. The position of the N atom in the pentacyclic ring of heterocyclic molecules affects the excited-state decay: A case study of isothiazole and thiazole. J. Mol. Struct., 2018, 1172, 17-24. https://doi.org/10.1016/j.molstruc.2017.11.008

    Article  CAS  ADS  Google Scholar 

  26. X. Yang, S. Wang, L. Xu, Q. Yan, C. Xu, P. Matveev, L. Lei, and C. Xiao. New tetradentate N,O-hybrid phenanthroline-derived organophosphorus extractants for the separation and complexation of trivalent actinides and lanthanides. Inorg. Chem. Front., 2022, 9(18), 4671-4684. https://doi.org/10.1039/d2qi01153k

    Article  CAS  Google Scholar 

  27. K. Nehra, A. Dalal, A. Hooda, R. K. Saini, D. Singh, and S. Kumar. Synthesis and photoluminescence characterization of the complexes of samarium dibenzoylmethanates with 1,10-phenanthroline derivatives. Polyhedron, 2022, 217, 115730. https://doi.org/10.1016/j.poly.2022.115730

    Article  CAS  Google Scholar 

  28. P. A. Demakov, A. A. Ryadun, and V. P. Fedin. Aliphatic-bridged early lanthanide metal–organic frameworks: Topological polymorphism and excitation-dependent luminescence. Inorganics, 2022, 10(10), 163. https://doi.org/10.3390/inorganics10100163

    Article  CAS  Google Scholar 

  29. Bruker Apex3 Software Suite: Apex3, SADABS-2016/2 and SAINT, Version 2018.7-2. Madison, WI, USA: Bruker AXS Inc., 2017.

  30. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  31. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  ADS  Google Scholar 

  32. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  33. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler. Chemistry with ADF. J. Comput. Chem., 2001, 22(9), 931-967. https://doi.org/10.1002/jcc.1056

    Article  CAS  Google Scholar 

  34. A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38(6), 3098-3100. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  ADS  Google Scholar 

  35. C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37(2), 785-789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  ADS  Google Scholar 

  36. E. Van Lenthe and E. J. Baerends. Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem., 2003, 24(9), 1142-1156. https://doi.org/10.1002/jcc.10255

    Article  CAS  PubMed  Google Scholar 

  37. G. T. Wright. Absolute quantum efficiency of photofluorescence of anthracene crystals. Proc. Phys. Soc., Sect. B, 1955, 68(4), 241-248. https://doi.org/10.1088/0370-1301/68/4/306

    Article  ADS  Google Scholar 

  38. A. Bondi. Van der Waals volumes and radii. J. Phys. Chem., 1964, 68(3), 441-451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  39. J-C. G. Bünzli and S. V. Eliseeva. Basics of lanthanide photophysics. In: Lanthanide Luminescence: Springer Series on Fluorescence, Vol. 7 / Eds. P. Hänninen, H. Härmä. Berlin, Germany: Springer, 2010, 1-45. https://doi.org/10.1007/4243_2010_3

    Chapter  Google Scholar 

  40. K. S. Smirnova, E. A. Ivanova, I. P. Pozdnyakov, A. A. Russkikh, I. V. Eltsov, V. V. Dotsenko, and E. V. Lider. 2D polymeric lanthanide(III) compounds based on novel bright green emitting enaminone ligand. Inorg. Chim. Acta, 2022, 542, 121107. https://doi.org/10.1016/j.ica.2022.121107

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (Agreement No. 23-23-10028, 20.04.2023) and the Government of the Novosibirsk Oblast of the Russian Federation (Agreement No. p-65, 03.04.2023), project No. 23-23-10028. The study in the Multi-Access Center of the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences was supported by the Ministry of Science and Higher Education of the Russian Federation, project No. 121031700321-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Lider.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 122030.https://doi.org/10.26902/JSC_id122030

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanzhenakova, E.A., Smirnova, K.S., Pozdnyakov, I.P. et al. Photoluminescent Mixed-Ligand Europium(III) Complex with 3,4-Dichloroisothiazole-5-Carboxylic Acid and 1,10-Phenanthroline. J Struct Chem 65, 289–300 (2024). https://doi.org/10.1134/S0022476624020070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020070

Keywords

Navigation