Skip to main content
Log in

Synthesis, Structure, and Photoluminescent Properties of Zn2+, Mn2+, Cd2+, Eu3+, and Tb3+ Complexes with 4-Allyl-2,3,5,6-Tetrafluorobenzoic Acid Anions and 1,10-Phenanthroline

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We report a synthesis of a series of molecular compounds and coordination polymers of Zn2+, Mn2+ Cd2+, Eu3+, and Tb3+ with 4-allyl-2,3,5,6-tetrafluorobenzoic acid (4-Afb) anions and 1,10-phenanthroline with compositions [Zn(H2O)(phen)(4-Afb)2] (1), [Mn(H2O)(phen)(4-Afb)2]n·nH2O (2), [Cd(H2O)(phen)(4-Afb)2]n (3), [Cd(phen)(4-Afb)2]n (4), [Ln2(phen)2(4-Afb)6] (Ln = Eu 5Eu; Tb 5Tb). It is shown that the obtained cadmium coordination polymers have various compositions and structures, depending on crystallization conditions. The prepared compounds are characterized by single-crystal XRD, powder XRD, IR spectroscopy, and CHN analysis. Noncovalent interactions are analyzed using the Hirshfeld surface analysis. It is determined that the crystal packings is mainly stabilized by π⋯π, C–H⋯F, and C–F⋯π interactions. The photoluminescent properties of the 5Eu and 5Tb complexes are studied. It is shown that the structure-forming effects of non-covalent “arene–perfluoroarene” interactions can be possibly used for preorganizing reactive functional groups in the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. Z. Zhang and M. J. Zaworotko. Template-directed synthesis of metal-organic materials. Chem. Soc. Rev., 2018, 16, 43. https://doi.org/10.1039/C4CS00075G

    Article  CAS  PubMed  Google Scholar 

  2. M. Antonietti and M. Oschatz. The concept of “noble, heteroatom-doped carbons”, their directed synthesis by electronic band control of carbonization, and applications in catalysis and energy materials. Adv. Mater., 2018, 30(21), 1706836. https://doi.org/10.1002/adma.201706836

    Article  PubMed  Google Scholar 

  3. B.-H. Liu, S.-H. Yu, S.-F. Chen, and C.-Y. Wu. Hexamethylenetetramine directed synthesis and properties of a new family of α-nickel hydroxide organic–inorganic hybrid materials with high chemical stability. J. Phys. Chem. B, 2006, 110(9), 4039. https://doi.org/10.1021/jp055970t

    Article  CAS  PubMed  Google Scholar 

  4. D.-M. Chen, N.-N. Zhang, C.-S. Liu, and M. Du. Template-directed synthesis of a luminescent Tb–MOF material for highly selective Fe3+ and Al3+ ion detection and VOC vapor sensing. J. Mater. Chem. C, 2017, 5, 2311. https://doi.org/10.1039/C6TC05349A

    Article  CAS  Google Scholar 

  5. H. Kargar, H. Ghazavi, and M. Darroudi. Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects. Ceram. Int., 2015, 41(3), 4123. https://doi.org/10.1016/j.ceramint.2014.11.108

    Article  CAS  Google Scholar 

  6. Y. Kumar, A. S. K. Sinha, K. D. P. Nigam, D. Dwivedi, and J. S. Sangwai. Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. Nanoscale, 2023, 15, 6075. https://doi.org/10.1039/D2NR07163K

    Article  CAS  PubMed  Google Scholar 

  7. P. Gütlich, A. B. Gaspar, and Y. Garcia. Spin state switching in iron coordination compounds. Beilstein J. Org. Chem., 2013, 9, 342. https://doi.org/10.3762/bjoc.9.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. L. Xiao, Z. Wang, and J. Guan. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord. Chem. Rev., 2022, 472, 214777. https://doi.org/10.1016/j.ccr.2022.214777

    Article  CAS  Google Scholar 

  9. M. A. Shmelev, A. S. Chistyakov, G. A. Razgonyaeva, V. V. Kovalev, J. K. Voronina, F. M. Dolgushin, N. V. Gogoleva, M. A. Kiskin, A. A. Sidorov, and I. L. Eremenko. Effect of non-covalent interactions on the 2,4- and 3,5-dinitrobenzoate Eu–Cd complex structures. Crystals, 2022, 12(4), 508. https://doi.org/10.3390/cryst12040508

    Article  CAS  Google Scholar 

  10. S. A. Adonin, M. A. Bondarenko, A. S. Novikov, and M. N. Sokolov. Halogen bonding in isostructural Co(II) complexes with 2-halopyridines. Crystals, 2020, 10(4), 289. https://doi.org/10.3390/cryst10040289

    Article  CAS  Google Scholar 

  11. S. A. Adonin, A. N. Usoltsev, A. S. Novikov, B. A. Kolesov, V. P. Fedin, and M. N. Sokolov. One- and two-dimensional iodine-rich iodobismuthate(III) complexes: Structure, optical properties, and features of halogen bonding in the solid state. Inorg. Chem., 2020, 59(5), 3290. https://doi.org/10.1021/acs.inorgchem.9b03734

    Article  CAS  PubMed  Google Scholar 

  12. A. Zahn, C. Brotschi, and C. J. Leumann. Pentafluorophenyl–phenyl interactions in biphenyl-DNA. Chem. Eur. J., 2005, 11(7), 2125. https://doi.org/10.1002/chem.200401128

    Article  CAS  Google Scholar 

  13. M. Gdaniec, W. Jankowski, M. J. Milewska, and T. Połoñski. Supramolecular assemblies of hydrogen-bonded carboxylic acid dimers mediated by phenyl–pentafluorophenyl stacking interactions. Angew. Chem., Int.Ed., 2003, 42(33), 3903. https://doi.org/10.1002/anie.200351432

    Article  CAS  Google Scholar 

  14. M. A. Shmelev, M. A. Kiskin, J. K. Voronina, K. A. Babeshkin, N. N. Efimov, E. A. Varaksina, V. M. Korshunov, I. V. Taydakov, N. V. Gogoleva, A. A. Sidorov, and I. L. Eremenko. Molecular and polymer Ln2M2 (Ln = Eu, Gd, Tb, Dy; M = Zn, Cd) complexes with pentafluorobenzoate anions: The role of temperature and stacking effects in the structure; magnetic and luminescent properties. Materials, 2020, 13(24), 5689. https://doi.org/10.3390/ma13245689

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. M. A. Shmelev, N. V. Gogoleva, V. K. Ivanov, V. Kovalev, G. A. Razgonyaeva, M. Kiskin, A. Sidorov, and I. Eremenko. Heterometallic Ln(III)–Cd(II) complexes with anions of monocarboxylic acids: Synthetic approaches and analysis of structures and photoluminescence properties. Russ. J. Coord. Chem., 2022, 48, 539. https://doi.org/10.1134/S1070328422090056

    Article  CAS  Google Scholar 

  16. M. A. Shmelev, G. N. Kuznetsova, N. V. Gogoleva, F. M. Dolgushin, Y. V. Nelyubina, M. A. Kiskin, A. A. Sidorov, and I. L. Eremenko. Heteroleptic cadmium(II) and terbium(III) pentafluorobenzoate-benzoate and pentafluorobenzoate-2-furancarboxylate compounds. Russ. Chem. Bull., 2021, 70(5), 830-838. https://doi.org/10.1007/s11172-021-3156-9

    Article  CAS  Google Scholar 

  17. V. V. Kovalev, M. A. Shmelev, G. N. Kuznetsova, V. I. Erakhtina, G. A. Razgonyaeva, T. M. Ivanova, M. A. Kiskin, A. A. Sidorov, and I. L. Eremenko. Influence of the aromatic ligand nature and synthesis conditions on the structures of the copper pentafluorobenzoate complexes. Russ. J. Coord. Chem., 2023, 49, 230. https://doi.org/10.1134/S1070328422600619

    Article  CAS  Google Scholar 

  18. M. A. Shmelev, Yu. K. Voronina, S. S. Chekurova, N. V. Gogoleva, T. M. Ivanova, O. I. Lyamina, E. V. Fatyushina, M. A. Kiskin, A. A. Sidorov, and I. L. Eremenko. Coordination of hexahydro-1,3,5-trimethyl-1,3,5-triazine in cadmium(II) and cobalt(II) carboxylate complexes. Russ. J. Coord. Chem., 2021, 47, 551. https://doi.org/10.1134/S1070328421080078

    Article  CAS  Google Scholar 

  19. I. P. Malkerova, D. B. Kayumova, E. V. Belova, M. A. Shmelev, A. A. Sidorov, and A. S. Alikhanyan. Zinc pentafluorobenzoate [Zn2(H2O)(C6F5COO)4(Py)4]: Synthesis, structure, and thermodynamic characteristics. Russ. J. Coord. Chem., 2022, 48, 608. https://doi.org/10.1134/S1070328422100037

    Article  CAS  Google Scholar 

  20. G. Y. Lee, E. Hu, A. L. Rheingold, K. N. Houk, and E. M. Sletten. Arene-perfluoroarene interactions in solution. JOrg. Chem., 2021, 86(12), 8425. https://doi.org/10.1021/acs.joc.1c00921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. C. E. Smith, P. S. Smith, R. L. Thomas, E. G. Robins, J. C. Collings, C. Dai, A. J. Scott, S. Borwick, A. S. Batsanov, S. W. Watt, S. J. Clark, C. Viney, J. A. K. Howard, W. Clegg, and T. B. Marder. Arene-perfluoroarene interactions in crystal engineering: structural preferences in polyfluorinated tolans. J. Mater. Chem., 2004, 14, 413. https://doi.org/10.1039/B314094F

    Article  CAS  Google Scholar 

  22. J. C. Collings, K. P. Roscoe, R. L. Thomas, A. S. Batsanov, L. M. Stimson, J. A. K. Howard, and T. B. Marder. Arene-perfluoroarene interactions in crystal engineering. Part 3. Single-crystal structures of 1:1 complexes of octafluoronaphthalene with fused-ring polyaromatic hydrocarbons. New J. Chem., 2001, 25, 1410. https://doi.org/10.1039/B105502J

    Article  CAS  Google Scholar 

  23. J. C. Collings, K. P. Roscoe, E. G. Robins, A. S. Batsanov, L. M. Stimson, J. A. K. Howard, S. J. Clarkb, and T. B. Marder. Arene–perfluoroarene interactions in crystal engineering 8: structures of 1:1 complexes of hexafluorobenzene with fused-ring polyaromatic hydrocarbons. New J. Chem., 2002, 26, 1740. https://doi.org/10.1039/B207102A

    Article  CAS  Google Scholar 

  24. Y. Sun, Y. Lei, L. Liao, and W. Hu. Competition between arene–perfluoroarene and charge-transfer interactions in organic light-harvesting systems. Angew. Chem., Int. Ed., 2017, 56(35), 10352. https://doi.org/10.1002/anie.201702084

    Article  CAS  Google Scholar 

  25. Kh. E. Yorov, A. E. Baranchikov, M. A. Kiskin, A. A. Sidorov, and V. K. Ivanov. Functionalization of aerogels with coordination compounds. Russ. J. Coord. Chem., 2022, 48, 89. https://doi.org/10.1134/S1070328422020014

    Article  CAS  Google Scholar 

  26. A. D. Volodin, A. A. Korlyukov, E. N. Zorina-Tikhonova, A. S. Chistyakov, A. A. Sidorov, I. L. Eremenko, and A. V. Vologzhanina. Diastereoselective solid-state crossed photocycloaddition of olefins in a 3D Zn(II) coordination polymer. Chem. Commun., 2018, 54, 13861. https://doi.org/10.1039/C8CC07734G

    Article  CAS  Google Scholar 

  27. P. A. Demakov, D. N. Dybtsev, and V. P. Fedin. Diastereoselective guest-shape dependent [2+2]-photodimerization of 2-cyclopenten-1-one trapped within a metal–organic framework. Chem. Commun., 2023, 59, 9380-9383. https://doi.org/10.1039/D3CC02162A

    Article  CAS  Google Scholar 

  28. M. A. Sinnwell, J. Baltrusaitis, and L. R. MacGillivray. Combination of argentophilic and perfluorophenyl-perfluorophenyl interactions supports a head-to-head [2+2] photodimerization in the solid state. Cryst. Growth Des., 2015, 15(2), 538. https://doi.org/10.1021/cg501571u

    Article  CAS  Google Scholar 

  29. SMART (control) and SAINT (integration). Software. Version 5.0. Madison, WI, USA: Bruker AXS Inc., 1997.

  30. G. M. Sheldrick. SADABS. Madison, WI, USA: Bruker AXS Inc., 1997.

  31. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  ADS  Google Scholar 

  32. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K.Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42, 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  33. D. Casanova, M. Llunell, P. Alemany, and S. Alvarez. The rich stereochemistry of eight-vertex polyhedra: A continuous shape measures study. Chem. - Eur. J., 2005, 11(5), 1479-1494. https://doi.org/10.1002/chem.200400799

    Article  CAS  Google Scholar 

  34. S. P. Thomas, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. Accurate lattice energies for molecular crystals from experimental crystal structures. J. Chem. Theor. Comput., 2018, 14, 1614-1623. https://doi.org/10.1021/acs.jctc.7b01200

    Article  CAS  PubMed  Google Scholar 

  35. H. Ren, T. Song, J. Xu, X. He, L. Wang, P. Zhang, and J. Ye. Self-assembly of two zinc(II) supramolecular architectures with carboxylate and chelating aromatic amine ligands: [Zn(nba)2(phen)(H2O)] and [Zn(nip)(phen)]n (nba = 4-nitrobenzoic acid, nip = 5-nitroisophthalic acid). Transition Met. Chem., 2006, 31, 992. https://doi.org/10.1007/s11243-006-0095-0

    Article  CAS  Google Scholar 

  36. D. Wen and S. Ying. Aqua-bis(5-chlorosalicylato-κO)(1,10-phenanthroline-κ2N,N′)zinc(II). Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, 63(9), m2407/m2408. https://doi.org/10.1107/s1600536807040937

    Article  CAS  Google Scholar 

  37. J.-J. Nie, X. Xu, and D.-J. Xu. Aqua­bis­(4-chloro-2-hy­droxy­benzoato-κO)(1,10-phenanthroline-κ2N,N′)zinc(II). Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, 67, m855. https://doi.org/10.1107/S1600536811020435

    Article  CAS  Google Scholar 

  38. A. M. Baruah, A. Karmakar, and J. B. Baruah. Steric effects in controlling co-ordination environment in zinc 2-nitrobenzoate complexes. Inorg. Chim. Acta, 2008, 361(9/10), 2777-2784. https://doi.org/10.1016/j.ica.2008.01.044

    Article  CAS  Google Scholar 

  39. R. Thaimattam, F. Xue, J. A. R. P. Sarma, T. C. W. Mak, and G. R. Desiraju. Inclusion compounds of tetrakis(4-nitrophenyl)methane: C–H⋯O networks, pseudopolymorphism, and structural transformations. J. Am. Chem. Soc., 2001, 123(19), 4432. https://doi.org/10.1021/ja0031826

    Article  CAS  PubMed  Google Scholar 

  40. S. Das and P. K. Bharadwaj. Supramolecular host-guest systems of luminescent Zn(II) complexes with benzene, nitrobenzene, and ethanol: Selectivity of guest inclusion and solid-state fluorescence modulation studies. Cryst. Growth Des., 2007, 7(6), 1192. https://doi.org/10.1021/cg060531k

    Article  CAS  Google Scholar 

  41. J.-Z. Liu, Z. Zhang, Z.-W. Shi, and P. Gao. Aqua­bis­(benzoato-κO)(1,10-phenanthroline-κ2N,N′)zinc(II). Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, 67, m30. https://doi.org/10.1107/S1600536810049639

    Article  Google Scholar 

  42. Z.-P. Deng, S. Gao, L.-H. Huo, and H. Zhao. Aqua­bis(4-formyl­benzoato-κO)(1,10-phenanthroline-κ2N,N′)zinc(II), Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62, m3527. https://doi.org/10.1107/S1600536806050239

    Article  CAS  Google Scholar 

  43. S. Banerjee, P. Rajakannu, R. J. Butcher, and R. Murugavel. Auxiliary ligand-aided tuning of aggregation of transition metal benzoates: Isolation of four different types of coordination polymers. CrystEngComm., 2014, 16, 8429. https://doi.org/10.1039/C4CE01043D

    Article  CAS  Google Scholar 

  44. W. Li, C.-H. Li, Y.-Q. Yang, D.-P. Li, and Y.-L. Peng. Hydrothermal synthesis, structure and thermal stability of a one dimensional chain cadmium coordination polymer [Cd(phen)(2,4,6-TMBA)2(H2O)]n. Chin. J. Inorg. Chem., 2007, 23, 2013.

  45. M. Constantin, S. Bucatariu, V. Harabagiu, I. Popescu, P. Ascenzi, and G. Fundueanu. Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. Eur. J. Pharm. Sci., 2014, 62, 86. https://doi.org/10.1016/j.poly.2014.05.005

    Article  CAS  Google Scholar 

  46. W. Li, C.-H. Li, Y.-Q. Yang, and D.-P. Li. Hydrothermal synthesis, crystal structure and luminescence property of one-dimension chain coordination polymer [Cd(phen)(α-Furacrylic radical)2]n. Chin. J. Inorg. Chem., 2008, 24, 2060.

  47. M.-S. Chen, C.-H. Zhang, D.-Z. Kuang, Y.-L. Feng, and Y.-F. Deng. catena-Poly[[1,10-phenanthroline-κ2N,N′)cadmium(II)]-μ-3,5-dimethylbenzoato-κ2O:O′]. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, 63, m965. https://doi.org/10.1107/S1600536807009579

    Article  CAS  Google Scholar 

  48. M. A. Shmelev, G. N. Kuznetsova, F. M. Dolgushin, Yu. K. Voronina, N. V. Gogoleva, M. A. Kiskin, V. K. Ivanov, A. A. Sidorov, and I. L. Eremenko. Influence of the fluorinated aromatic fragments on the structures of the cadmium and zinc carboxylate complexes using pentafluorobenzoates and 2,3,4,5-tetrafluorobenzoates as examples. Russ. J. Coord. Chem., 2021, 47, 127. https://doi.org/10.1134/S1070328421020068

    Article  CAS  Google Scholar 

  49. H. Bai, H. Gao, and M. Hu. A zigzag chain Cd (II) coordination polymer based on 2,4-dinitro-benzoic acid ligand: Syntheses, structure and photoluminescence. Adv. Mater. Res., 2014, 997, 140. https://doi.org/10.4028/www.scientific.net/AMR.997.140

    Article  CAS  Google Scholar 

  50. J. K. Voronina, D. S. Yambulatov, A. S. Chistyakov, A. E. Bolot′ko, L. M. Efromeev, M. A. Shmelev, A. A. Sidorov, and I. L. Eremenko. Influence of the arene/perfluoroarene ratio on the structure and non-covalent interactions in crystals of Cd(II), Cd(II)–Tb(III) and Cu(II) compounds. Crystals, 2023, 13(4), 678. https://doi.org/10.3390/cryst13040678

    Article  CAS  Google Scholar 

  51. Y. Chen, X. Yu, Y. Jiang, M. Liu, Z. Chen, L. Ding, B. Li, and C. Zeng. Highly sensitive sensing device based on highly luminescent lanthanide nanocluster for biomarker in human urine and serum. Spectrochim. Acta, Part A, 2022, 270, 120782. https://doi.org/10.1016/j.saa.2021.120782

    Article  CAS  PubMed  Google Scholar 

  52. F. Zhang, R.-F. Zhang, J. Ru, J. Wang, Q.-L. Li, and C.-L. Ma. Synthesis, structures, photoluminescence and magnetic properties of three dinuclear lanthanide(III) complexes derived from 4-fluorophenylselenoacetic acid. Z. Anorg. Allg. Chem., 2021, 647(11), 1213. https://doi.org/10.1002/zaac.202000438

    Article  CAS  Google Scholar 

  53. J.-B. Shen, J.-L. Liu, and G.-L. Zhao. Tetrakis(μ-2-phen-oxy-propionato)-κO,O′:O′;κO:O,O′;κO:O′-bis-[(1,10-phenanthroline-κN,N′)(2-phen-oxy-propionato-κO,O′)terbium(III)]. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, 67, m1234. https://doi.org/10.1107/S1600536811032041

    Article  CAS  Google Scholar 

  54. M. Liu, P. Tao, Y. Chen, Y. Jiang, L. Li, L. Ding, and Y. Zhao. Effect of single variable factor of electron-acceptor on the luminescence quantum yield of terbium complex. Z. Anorg. Allg. Chem., 2021, 647(11), 1203. https://doi.org/10.1002/zaac.202000398

    Article  CAS  Google Scholar 

  55. G. L. dos Santos, J. P. O. Silva, G. Galleani, M. V. Colaço, F. F. Ferreira, I. T. S. Bastos, M. S. Ferreira, R. O. Freire, and L. F. Marques. A relation between the structural diversity and photoluminescent properties in three new classes of Eu3+ hydrocinnamate complexes containing N,N-bidentate and N,N,N-tridentate ancillary ligands. J. Lumin., 2021, 239, 118398. https://doi.org/10.1016/j.jlumin.2021.118398

    Article  CAS  ADS  Google Scholar 

  56. S. González-Pérez, J. Sanchiz, V. D. Rodríguez, D. Cañadillas-Ramallo, J. González-Platas, D. Borchert, B. González-Díaz, C. Hernández-Rodríguez, and R. Guerrero-Lemus. Highly luminescent film as enhancer of photovoltaic devices. J. Lumin., 2018, 201, 148. https://doi.org/10.1016/j.jlumin.2018.04.038

    Article  CAS  ADS  Google Scholar 

  57. J.-W. Zhang, Y. Man, Y.-N. Ren, W.-H. Liu, B.-Q. Liu, and Y.-P. Dong. Syntheses, structures, photoluminescence, and magnetism of a series of discrete lanthanide complexes based on 2,5-dichlorobenzoate and 1,10-phenanthroline. Z. Anorg. Allg. Chem., 2019, 645(6/7), 580. https://doi.org/10.1002/zaac.201800478

    Article  CAS  Google Scholar 

  58. R. L. Ayscue III, C. P. Verwiel, J. A. Bertke, and K. E. Knope. Excitation-dependent photoluminescence color tuning in lanthanide-organic hybrid materials. Inorg. Chem., 2020, 59(11), 7539. https://doi.org/10.1021/acs.inorgchem.0c00405

    Article  CAS  PubMed  Google Scholar 

  59. L. F. Marques, A. Cuin, G. S. G. de Carvalho, M. V. dos Santos, S. J. L. Ribeiro, and F. C. Machado. Energy transfer process in highly photoluminescent binuclear hydrocinnamate of europium, terbium and gadolinium containing 1,10-phenanthroline as ancillary ligand. Inorg. Chim. Acta, 2016, 441, 67. https://doi.org/10.1016/j.ica.2015.11.009

    Article  CAS  Google Scholar 

  60. G. M. J. Schmidt. Photodimerization in the solid state. Pure Appl. Chem., 2009, 27, 647. https://doi.org/10.1351/pac197127040647

    Article  CAS  Google Scholar 

  61. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodríguez-Ubis, and J. Kankare. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J. Lumin., 1997, 75(2), 149. https://doi.org/10.1016/S0022-2313(97)00113-0;

    Article  CAS  ADS  Google Scholar 

  62. K. Hajime, K. Hiroshi, and Y. Teijiro. Calculation of the chemical shifts by the semi-empirical SCF MO method for all valence-electron systems. Bull. Chem. Soc. Jpn., 1970, 43(7), 1921. https://doi.org/10.1246/bcsj.43.1921

    Article  Google Scholar 

  63. K. Shinya, H. Yasuchika, W. Yuji, and Y. Shozo. Thermo-sensitive luminescence based on the back energy transfer in terbium(III) complexes. Chem. Lett., 2004, 33(11), 1438. https://doi.org/10.1246/cl.2004.1438

    Article  CAS  Google Scholar 

  64. V. V. Utochnikova, N. N. Solodukhin, A. N. Aslandukov, L. Marciniak, I. S. Bushmarinov, A. A. Vashchenko, and N. P. Kuzmina. Lanthanide tetrafluorobenzoates as emitters for OLEDs: New approach for host selection. Org. Electron., 2017, 44, 85-93. https://doi.org/10.1016/j.orgel.2017.01.026

    Article  CAS  Google Scholar 

  65. L. N. Puntus, K. A. Lyssenko, M. Yu. Antipin, and J.-C. G. Bünzli. Role of inner- and outer-sphere bonding in the sensitization of EuIII-luminescence deciphered by combined analysis of experimental electron density distribution function and photophysical data. Inorg. Chem., 2008, 47(23), 11095-11107. https://doi.org/10.1021/ic801402u

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 22-73-10192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shmelev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 122814.https://doi.org/10.26902/JSC_id122814

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmelev, M.A., Chistyakov, A.S., Razgonyaeva, G.A. et al. Synthesis, Structure, and Photoluminescent Properties of Zn2+, Mn2+, Cd2+, Eu3+, and Tb3+ Complexes with 4-Allyl-2,3,5,6-Tetrafluorobenzoic Acid Anions and 1,10-Phenanthroline. J Struct Chem 65, 362–380 (2024). https://doi.org/10.1134/S0022476624020148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020148

Keywords

Navigation