Skip to main content
Log in

Conformational Polymorphism of Elsulfavirine Sodium Salt

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The X-ray diffraction analysis of two polymorphs of sodium (cis)-N-((4-(2-(4-bromo-3-(3-chloro-5-cyanophenoxy)-2-fluorophenyl)acetamido)-3-chlorophenyl)sulfonyl)propioimide shows that the organic anion in them is in elongated and globular conformations. Both conformations are characterized by the absence of strong intramolecular interactions. According to the quantum chemical study, both the isolated anion in the globular conformation and the polymorph containing it are more thermodynamically stable, and the difference in free energies of the polymorphs increases with temperature, which is explained by the role of the entropy factor. The elongated conformation is stabilized in the crystal by interanionic Hal…π interactions and stacking interactions involving the phenyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. A. V. Kravchenko, E. A. Orlova-Morozova, T. E. Shimonova, O. A. Kozyrev, F. I. Nagimova, N. G. Zaharova, E. S. Ivanova, U. A. Kuimova, A. A. Popova, O. E. Chernova, O. S. Tonkih, D. A. Gusev, A. A. Yakovlev, V. V. Pokrovsky, V. V. Bychko, and N. V. Vostokova. Effektivnost′ i bezopasnost′ novogo rossiiskogo nenukleozidnogo ingibitora obratnoi transkriptazy elsul′favirina v pervoi linii lecheniya vich-infektsii v kombinatsii s dvumya nukleozidnymi/nukleotidnymi ingibitorami obratnoi transkriptazy - issledovanie 96 nedel′ (Efficacy and safety of novel russian non-nucleoside reverse transcriptase inhibitor elsulfavirine e in combination with 2 nucleoside/nucleotide reverse transcriptase inhibitors in first-line HIV treatment - 96-week study). Zh. Infektol., 2018, 10(2), 76-82. https://doi.org/10.22625/2072-6732-2018-10-2-76-82 [In Russian]

    Article  Google Scholar 

  2. C. T. Supuran, A. Nocentini, E. Yakubova, N. Savchuk, S. Kalinin, and M. Krasavin. Biochemical profiling of anti-HIV prodrug Elsulfavirine e (Elpida ® ) and its active form VM1500A against a panel of twelve human carbonic anhydrase isoforms. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1056-1060. https://doi.org/10.1080/14756366.2021.1927007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. A. Korlyukov, M. Malinska, A. V. Vologzhanina, M. S. Goizman, D. Trzybinski, and K. Wozniak. Charge density view on bicalutamide molecular interactions in the monoclinic polymorph and androgen receptor binding pocket. IUCrJ, 2020, 7(1), 71-82. https://doi.org/10.1107/s2052252519014416

    Article  CAS  Google Scholar 

  4. A. V. Vologzhanina, I. E. Ushakov, and A. A. Korlyukov. Intermolecular interactions in crystal structures of imatinib-containing compounds. Int. J. Mol. Sci., 2020, 21(23), 8970. https://doi.org/10.3390/ijms21238970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C. C. da Silva and F. T. Martins. Multiple conformations and supramolecular synthons in almost fifty crystal structures of the anti-HIV/HBV drug lamivudine. J. Mol. Struct., 2019, 1181, 157-170. https://doi.org/10.1016/j.molstruc.2018.12.099

    Article  ADS  CAS  Google Scholar 

  6. A. Chatziadi, E. Skořepová, J. Rohlíček, M. Dušek, L. Ridvan, and M. Šoóš. Mechanochemically induced polymorphic transformations of sofosbuvir. Cryst. Growth Des., 2020, 20(1), 139-147. https://doi.org/10.1021/acs.cgd.9b00922

    Article  CAS  Google Scholar 

  7. J. Nyman and G. M. Day. Static and lattice vibrational energy differences between polymorphs. CrystEngComm, 2015, 17(28), 5154-5165. https://doi.org/10.1039/c5ce00045a

    Article  CAS  Google Scholar 

  8. J. J. McKinnon, A. S. Mitchell, and M. A. Spackman. Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. Chem. - Eur. J., 1998, 4(11), 2136-2141. https://doi.org/10.1002/(sici)1521-3765(19981102)4:11<2136::aid-chem2136>3.0.co;2-g

    Article  CAS  Google Scholar 

  9. M. A. Spackman and D. Jayatilaka. Hirshfeld surface analysis. CrystEngComm, 2009, 11(1), 19-32. https://doi.org/10.1039/b818330a

    Article  CAS  Google Scholar 

  10. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr., 2021, 54(3), 1006-1011. https://doi.org/10.1107/s1600576721002910

    Article  CAS  Google Scholar 

  11. R. Herbst-Irmer, J. Henn, J. J. Holstein, C. B. Hübschle, B. Dittrich, D. Stern, D. Kratzert, and D. Stalke. Anharmonic motion in experimental charge density investigations. J. Phys. Chem. A, 2013, 117(3), 633-641. https://doi.org/10.1021/jp309985e

    Article  CAS  PubMed  Google Scholar 

  12. S. C. Capelli, M. Förtsch, and H. B. Bürgi. Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. II. Application to benzene (C6D6) and urea [OC(NH)2]. Acta Crystallogr., Sect. A: Found. Crystallogr., 2000, 56(5), 413-424. https://doi.org/10.1107/s0108767300005638

    Article  ADS  Google Scholar 

  13. T. Aree and H.-B. Bürgi. Specific heat of molecular crystals from atomic mean square displacements with the Einstein, Debye, and Nernst–Lindemann models. J. Phys. Chem. B, 2006, 110(51), 26129-26134. https://doi.org/10.1021/jp0636322

    Article  CAS  PubMed  Google Scholar 

  14. K. N. Jarzembska, A. A. Hoser, R. Kamiński, A. Ø. Madsen, K. Durka, and K. Woźniak. Combined experimental and computational studies of pyrazinamide and nicotinamide in the context of crystal engineering and thermodynamics. Cryst. Growth Des., 2014, 14(7), 3453-3465. https://doi.org/10.1021/cg500376z

    Article  CAS  Google Scholar 

  15. A. A. Hoser and A. Ø. Madsen. Dynamic quantum crystallography: lattice-dynamical models refined against diffraction data. II. Applications to L-alanine, naphthalene and xylitol. Acta Crystallogr., Sect. A: Found. Adv., 2017, 73(2), 102-114. https://doi.org/10.1107/s2053273316018994

    Article  CAS  Google Scholar 

  16. S. C. Capelli, A. Albinati, S. A. Mason, and B. T. M. Willis. Molecular motion in crystalline naphthalene: Analysis of multi-temperature X-ray and neutron diffraction data. J. Phys. Chem. A, 2006, 110(41), 11695-11703. https://doi.org/10.1021/jp062953a

    Article  CAS  PubMed  Google Scholar 

  17. CrysAlis PRO. Yarnton, Oxfordshire, England: Agilent Technologies, 2014.

  18. APEX2 Software Suite. Madison, Wisconsin, USA: Bruker AXS, 2012.

  19. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  20. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  ADS  Google Scholar 

  21. G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16), 11169-11186. https://doi.org/10.1103/physrevb.54.11169

    Article  ADS  CAS  Google Scholar 

  22. G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1), 15-50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  23. G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47(1), 558-561. https://doi.org/10.1103/physrevb.47.558

    Article  ADS  CAS  Google Scholar 

  24. G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20), 14251-14269. https://doi.org/10.1103/physrevb.49.14251

    Article  ADS  CAS  Google Scholar 

  25. S. Grimme, S. Ehrlich, and L. Goerigk. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7), 1456-1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision C.01. Wallingford, CT, USA: Gaussian, 2009.

  27. D. Alfè. PHON: a program to calculate phonons using the small displacement method. Comput. Phys. Commun., 2009, 180(12), 2622-2633. https://doi.org/10.1016/j.cpc.2009.03.010

    Article  ADS  CAS  Google Scholar 

  28. D. Jayatilaka and D. J. Grimwood. Tonto: a fortran based object-oriented system for quantum chemistry and crystallography. In: Computational Science - ICCS 2003: Lecture Notes in Computer Science, Vol. 2660 / Eds. P. M. A. Sloot, D. Abramson, A. V. Bogdanov, Y. E. Gorbachev, J. J. Dongarra, and A. Y. Zomaya. Berlin/Heidelberg, Germany: Springer, 2003. https://doi.org/10.1007/3-540-44864-0_15

    Chapter  Google Scholar 

Download references

Funding

The research was supported by the Russian Science Foundation, grant 20-13-00241. The single crystal XRD study was supported by the Ministry of Science and Higher Education of the Russian Federation and carried out using the facilities of the Center for Molecular Studies, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Volodin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 123238.https://doi.org/10.26902/JSC_id123238

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, A.D., Vologzhanina, A.V., Peresypkina, E.V. et al. Conformational Polymorphism of Elsulfavirine Sodium Salt. J Struct Chem 65, 412–421 (2024). https://doi.org/10.1134/S0022476624020185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020185

Keywords

Navigation