Skip to main content
Log in

Molecular and Crystal Structures of Ethyl-2-Amino-2-Bis(3,5-di-Tert-Butyl-4-Hydroxybenzyl)Ethanoate. Hydrogen Bonds in the Crystals of Sterically Hindered Phenols

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Ethyl-2-amino-2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)ethanoate is prepared, its molecular and crystal structures are studied. The H-bond system in the crystals of compounds containing sterically hindered phenolic groups is analyzed. It is shown that a disproportion of proton-donor and proton-accepting groups in crystals may lead to the formation of an H-bond system in which hydroxyl and amino groups are not involved in hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. V. E. Kataev, I. Y. Strobykina, and L. Y. Zakharova. Quaternary ammonium derivatives of natural terpenoids. Synthesis and properties. Russ. Chem. Bull., 2014, 63, 1884-1900. https://doi.org/10.1007/s11172-014-0680-x

    Article  CAS  Google Scholar 

  2. Th. G. Osimitz and W. Droege. Quaternary ammonium compounds: Perspectives on benefits, hazards, and risk. Toxicology Res. Appl., 2021, 5, 1. https://doi.org/10.1177/23978473211049085

    Article  CAS  Google Scholar 

  3. T. Padrtova, P. Marvanova, K. Odehnalova, R. Kubinova, O. Parravicini, A. Garro, R. D. Enriz, O. Humpa, M. Oravec, and P. Mokry. Synthesis, analysis, cholinesterase-inhibiting activity and molecular modelling studies of 3-(dialkylamino)-2-hydroxypropyl 4-[(alkoxy-carbonyl)amino]benzoates and their quaternary ammonium salts. Molecules, 2017, 22, 2048. https://doi.org/10.3390/molecules22122048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. V. P. Nair and J. M. Hunter. Anticholinesterases and anticholinergic drugs. Contin. Educ. Anaesth. Crit. Care Pain, 2004, 4, 164-168, https://doi.org/10.1093/bjaceaccp/mkh045

    Article  Google Scholar 

  5. A. Conejo-Garcia, L. M. Pisani, Del Carmen Nunez, M. Catto, O. Nicolotti, F. Leonetti, J. M. Campos, M. A. Gallo, A. Espinosa, and A. Carotti. Homodimeric bis-quaternary heterocyclic ammonium salts as potent acetyl- and butyrylcholinesterase inhibitors: A systematic investigation of the influence of linker and cationic heads over affinity and selectivity. J. Med. Chem., 2011, 54, 2627-2645. https://doi.org/10.1021/jm101299d

    Article  CAS  PubMed  Google Scholar 

  6. N. Skrzypczak, K. Pyta, P. Ruszkowski, P. Mikolajczak, M. Kucinska, M. Murias, M. Gdaniec, F. Bartl, and P. Przybylski. Anticancer activity and toxicity of new quaternary ammonium geldanamycin derivative salts and their mixtures with potentiators. J. Enzyme Inhibit. Med. Chem., 2021, 36, 1898-1904. https://doi.org/10.1080/14756366.2021.1960829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. S. Yang, D. Song, W. J. Ko, B. Kim, B.-K. Kim, S.-K. Park, M. Won, K. Lee, K. Lee, H. M. Kim, and G. Han. Synthesis and biological evaluation of novel aliphatic amido-quaternary ammonium salts for anticancer chemotherapy: Part II. Eur. J. Med. Chem., 2013, 63, 621. https://doi.org/10.1016/j.ejmech.2012.12.063

    Article  CAS  PubMed  Google Scholar 

  8. N. Basilico, M. Migotto, D. P. Ilboudo, D. Taramelli, R. Stradi, and E. Pini. Modified quaternary ammonium salts as potential antimalarial agents. Bioorg. Med. Chem., 2015, 23, 4681-4687. https://doi.org/10.1016/j.bmc.2015.05.055

    Article  CAS  Google Scholar 

  9. N. Baker, A. J. Williams, A. Tropsha, and S. Ekins. Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharm. Res., 2020, 37, 104. https://doi.org/10.1007/s11095-020-02842-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Panunzio, A. Malabarba, and P. Vicennati. Synthesis and antibacterial activity of new antibiotics arising from cephalosporin-monobactam coupling. Arkivoc, 2004, 2004(13), 36-47. https://doi.org/10.3998/ark.5550190.0005.d05

    Article  Google Scholar 

  11. M. C. Jennings, K. P. C. Minbiole, and W. M. Wuest. Quaternary ammonium compounds: An antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect. Dis., 2015, 1, 288-303. https://doi.org/10.1021/acsinfecdis.5b00047

    Article  CAS  PubMed  Google Scholar 

  12. K. Hegstad, S. Langsrud, B. T. Lunestad, A. A. Scheie, M. Sunde, and S. P. Yazdankhah. Does the wide use of quarternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb. Drug Resist., 2010, 16, 91-104. https://doi.org/10.1089/mdr.2009.0120

    Article  CAS  PubMed  Google Scholar 

  13. S. V. Sapozhnikov, N. V. Shtyrlin, A. R. Kayumov, A. E. Zamaldinova, A. G. Iksanova, E. V. Nikitina, E. S. Krylova, D. Yu. Grishaev, K. V. Balakin, and Yu. G. Shtyrlin. New quaternary ammonium pyridoxine derivatives: synthesis and antibacterial activity. Med. Chem. Res., 2017, 26, 3188-3202. https://doi.org/10.1007/s00044-017-2012-9

    Article  CAS  Google Scholar 

  14. A. N. Vereshchagin, N. A. Frolov, K. S. Egorova, M. M. Seitkalieva, and V. P. Ananikov. Quaternary ammonium compounds (QACs) and ionic liquids (ILs) as biocides: From simple antiseptics to tunable antimicrobials. Int. J. Mol. Sci., 2021, 22, 6793. https://doi.org/10.3390/ijms22136793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. N. Pashirova, Z. M. Shaikhutdinova, V. F. Mironov, and A. V. Bogdanov. Ammonium amphiphiles based on natural compounds: Design, synthesis, properties and biomedical applications. A review. Dokl. Chem., 2023, 509, 3-21. https://doi.org/10.1134/s0012500823700179

    Article  CAS  Google Scholar 

  16. S. V. Bukharov, R. A. Khabibullina, N. I. Akylbekov, I. A. Litvinov, O. A. Lodochnikova, A. B. Dobrynin, A. G. Strelnik, A. R. Burilov, I. A. Krutov, and E. L. Gavrilova. Reactions of derivatives of phosphorylacetic acid hydrazides with 3,5-di-tert-butyl-4-hydroxybenzyl acetate. Synth. Commun., 2020, 50, 41-47. https://doi.org/10.1080/00397911.2019.1681453.

    Article  CAS  Google Scholar 

  17. APEX2 (Version 2.1), SAINTPlus, Data Reduction and Correction Program, Version 7.31A. Madison, Wisconsin, USA: Bruker AXS, 2006.

  18. G. M. Sheldrik. SADABS, Program for empirical X-ray absorption correction. Bruker-Nonis, 1990-2004.

  19. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  20. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  ADS  Google Scholar 

  21. L. J. Farrugia. WinGX and ORTEP for Windows: an update. Appl. Crystallogr., 2012, 45, 849-854. https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  22. A. L. Spek. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65(2), 148-155. https://doi.org/10.1107/s090744490804362x

    Article  ADS  CAS  Google Scholar 

  23. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shield, J. S. Stevens, M. Towler, and P. A. Wood. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr., 2020, 53, 226-235. https://doi.org/10.1107/S1600576719014092

    Article  CAS  Google Scholar 

  24. A. V. Gulevskaya and J. I. Nelina-Nemtseva. 1,3-Dipolar cycloaddition reactions of azomethine ylides and alkynes. Chem. Heterocycl. Compd., 2018, 54, 1084-1107. https://doi.org/10.1007/s10593-019-02398-5

    Article  CAS  Google Scholar 

  25. C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2016, 72(2), 171-179. https://doi.org/10.1107/s2052520616003954

    Article  ADS  CAS  Google Scholar 

  26. W. Wen, M.-J. Luo, Y. Yuan, J.-H. Liu, Z.-L. Wu, T. Cai, Z.-W. Wu, Q. Ouyang, and Q.-X. Guo. Diastereodivergent chiral aldehyde catalysis for asymmetric 1,6-conjugated addition and Mannich reactions. Nat. Commun., 2020, 11, 5372. https://doi.org/10.1038/s41467-020-19245-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. X.-Z. Zhang, Y.-H. Deng, X. Yan, K.-Y. Yu, F.-X. Wang, X.-Y. Ma, and C.-A. Fan. Diastereoselective and enantioselective synthesis of unsymmetric β,β-diaryl-α-amino acid esters via organocatalytic 1,6-conjugate addition of para-quinone methides. J. Org. Chem., 2016, 81, 5655-5662. https://doi.org/10.1021/acs.joc.6b00390

    Article  CAS  PubMed  Google Scholar 

  28. T. Zeng, Y. P. Hou, W. Z. Ren, and W. Y. Xu. Diethyl 2,2-bis-(3,5-di-tert-butyl-4-hydroxy-benzyl)malonate. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2012, 68, o448. https://doi.org/10.1107/S1600536811054900

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Litvinov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 2, 121969.https://doi.org/10.26902/JSC_id121969

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinov, I.A., Bukharov, S.V., Tagasheva, R.G. et al. Molecular and Crystal Structures of Ethyl-2-Amino-2-Bis(3,5-di-Tert-Butyl-4-Hydroxybenzyl)Ethanoate. Hydrogen Bonds in the Crystals of Sterically Hindered Phenols. J Struct Chem 65, 281–288 (2024). https://doi.org/10.1134/S0022476624020069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624020069

Keywords

Navigation