Skip to main content

Advertisement

Log in

Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neuroimmune disorders, such as multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, and Guillain–Barré syndrome, are characterized by the dysfunction of both the immune system and the nervous system. Increasing evidence suggests that extracellular vesicles and autophagy are closely associated with the pathogenesis of these disorders. In this review, we summarize the current understanding of the interactions between extracellular vesicles and autophagy in neuroimmune disorders and discuss their potential diagnostic and therapeutic applications. Here we highlight the need for further research to fully understand the mechanisms underlying these disorders, and to develop new diagnostic and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018, 17: 162–173.

    Article  PubMed  Google Scholar 

  2. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018, 7: 1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 2016, 12: 225–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Colletti M, Ceglie D, Di Giannatale A, Nazio F. Autophagy and exosomes relationship in cancer: Friends or foes? Front Cell Dev Biol 2020, 8: 614178.

    Article  PubMed  Google Scholar 

  5. Olanrewaju AA, Hakami RM. The messenger apps of the cell: Extracellular vesicles as regulatory messengers of microglial function in the CNS. J Neuroimmune Pharmacol 2020, 15: 473–486.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dolcetti E, Bruno A, Guadalupi L, Rizzo FR, Musella A, Gentile A, et al. Emerging role of extracellular vesicles in the pathophysiology of multiple sclerosis. Int J Mol Sci 2020, 21: 7336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Misrielal C, Mauthe M, Reggiori F, Eggen BJL. Autophagy in multiple sclerosis: Two sides of the same coin. Front Cell Neurosci 2020, 14: 603710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D’Anca M, Fenoglio C, Buccellato FR, Visconte C, Galimberti D, Scarpini E. Extracellular vesicles in multiple sclerosis: Role in the pathogenesis and potential usefulness as biomarkers and therapeutic tools. Cells 2021, 10: 1733.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raghav A, Singh M, Jeong GB, Giri R, Agarwal S, Kala S, et al. Extracellular vesicles in neurodegenerative diseases: A systematic review. Front Mol Neurosci 2022, 15: 1061076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu T, Xu Y, Ahmad MA, Javed R, Hagiwara H, Tian X. Exosomes as a promising therapeutic strategy for peripheral nerve injury. Curr Neuropharmacol 2021, 19: 2141–2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D’Souza A, Dave KM, Stetler RA, Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev 2021, 171: 332–351.

    Article  PubMed  Google Scholar 

  12. Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015, 9: 476.

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018, 19: 213–228.

    Article  PubMed  Google Scholar 

  14. Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2002, 2: 569–579.

    Article  PubMed  Google Scholar 

  15. Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases 2017, 8: 220–232.

    Article  CAS  PubMed  Google Scholar 

  16. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013, 200: 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, et al. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012, 10: e1001450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 2004, 104: 2761–2766.

    Article  CAS  PubMed  Google Scholar 

  19. Øren A, White LR, Aasly J. Apoptosis in neurones exposed to cerebrospinal fluid from patients with multiple sclerosis or acute polyradiculoneuropathy. J Neurol Sci 2001, 186: 31–36.

    Article  PubMed  Google Scholar 

  20. Fernandes NCCA, Nogueira JS, Réssio RA, Cirqueira CS, Kimura LM, Fernandes KR, et al. Experimental Zika virus infection induces spinal cord injury and encephalitis in newborn Swiss mice. Exp Toxicol Pathol 2017, 69: 63–71.

    Article  CAS  PubMed  Google Scholar 

  21. Igci M, Baysan M, Yigiter R, Ulasli M, Geyik S, Bayraktar R, et al. Gene expression profiles of autophagy-related genes in multiple sclerosis. Gene 2016, 588: 38–46.

    Article  CAS  PubMed  Google Scholar 

  22. Cai PP, Wang HX, Zhuang JC, Liu QB, Zhao GX, Li ZX, et al. Variants of autophagy-related gene 5 are associated with neuromyelitis optica in the Southern Han Chinese population. Autoimmunity 2014, 47: 563–566.

    Article  CAS  PubMed  Google Scholar 

  23. Wang N, Yuan J, Karim MR, Zhong P, Sun YP, Zhang HY, et al. Effects of mitophagy on regulatory T cell function in patients with myasthenia gravis. Front Neurol 2020, 11: 238.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  24. Paunovic V, Peric S, Vukovic I, Stamenkovic M, Milosevic E, Stevanovic D, et al. Downregulation of LKB1/AMPK signaling in blood mononuclear cells is associated with the severity of Guillain–Barre syndrome. Cells 2022, 11: 2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dikic I. Proteasomal and autophagic degradation systems. Annu Rev Biochem 2017, 86: 193–224.

    Article  CAS  PubMed  Google Scholar 

  26. Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189: 1177–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011, 13: 132–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie Z, Klionsky DJ. Autophagosome formation: Core machinery and adaptations. Nat Cell Biol 2007, 9: 1102–1109.

    Article  CAS  PubMed  Google Scholar 

  29. Griffey CJ, Yamamoto A. Macroautophagy in CNS health and disease. Nat Rev Neurosci 2022, 23: 411–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walczak M, Martens S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 2013, 9: 424–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol 2020, 21: 439–458.

    Article  CAS  PubMed  Google Scholar 

  32. Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol 2016, 594: 3521–3531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 2015, 210: 153–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rangaraju S, Verrier JD, Madorsky I, Nicks J, Dunn WA Jr, Notterpek L. Rapamycin activates autophagy and improves myelination in explant cultures from neuropathic mice. J Neurosci 2010, 30: 11388–11397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alirezaei M, Fox HS, Flynn CT, Moore CS, Hebb ALO, Frausto RF, et al. Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy 2009, 5: 152–158.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, An P, Fei Y, Lu B. Modeling the degradation effects of autophagosome tethering compounds. Neurosci Bull 2021, 37: 255–260.

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Zhou D, Ren Y, Zhang Z, Guo X, Ma M, et al. Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1. Autophagy 2019, 15: 478–492.

    Article  CAS  PubMed  Google Scholar 

  38. Xiong Q, Li W, Li P, Yang M, Wu C, Eichinger L. The role of ATG16 in autophagy and the ubiquitin proteasome system. Cells 2018, 8: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wei W, Pan Y, Yang X, Chen Z, Heng Y, Yang B, et al. The emerging role of the interaction of extracellular vesicle and autophagy-novel insights into neurological disorders. J Inflamm Res 2022, 15: 3395–3407.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fader CM, Sánchez D, Furlán M, Colombo MI. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 2008, 9: 230–250.

    Article  CAS  PubMed  Google Scholar 

  41. Xu J, Camfield R, Gorski SM. The interplay between exosomes and autophagy - partners in crime. J Cell Sci 2018, 131: jcs215210.

    Article  PubMed  Google Scholar 

  42. Eitan E, Suire C, Zhang S, Mattson MP. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016, 32: 65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rong Y, Liu W, Wang J, Fan J, Luo Y, Li L, et al. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis 2019, 10: 340.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Scolding NJ, Morgan BP, Houston WAJ, Linington C, Campbell AK, Compston DAS. Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature 1989, 339: 620–622.

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Zinger A, Latham SL, Combes V, Byrne S, Barnett MH, Hawke S, et al. Plasma levels of endothelial and B-cell-derived microparticles are restored by fingolimod treatment in multiple sclerosis patients. Mult Scler 2016, 22: 1883–1887.

    Article  CAS  PubMed  Google Scholar 

  46. Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A. Evidence of platelet activation in multiple sclerosis. J Neuroinflammation 2008, 5: 27.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Minagar A, Jy W, Jimenez JJ, Sheremata WA, Mauro LM, Mao WW, et al. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 2001, 56: 1319–1324.

    Article  CAS  PubMed  Google Scholar 

  48. Groen K, Maltby VE, Scott RJ, Tajouri L, Lechner-Scott J. Erythrocyte microRNAs show biomarker potential and implicate multiple sclerosis susceptibility genes. Clin Transl Med 2020, 10: 74–90.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Verderio C, Muzio L, Turola E, Bergami A, Novellino L, Ruffini F, et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol 2012, 72: 610–624.

    Article  CAS  PubMed  Google Scholar 

  50. Liguori M, Nuzziello N, Licciulli F, Consiglio A, Simone M, Viterbo RG, et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: An integrated approach to uncover novel pathogenic mechanisms of the disease. Hum Mol Genet 2018, 27: 66–79.

    Article  CAS  PubMed  Google Scholar 

  51. Xu WD, Feng SY, Huang AF. Role of miR-155 in inflammatory autoimmune diseases: A comprehensive review. Inflamm Res 2022, 71: 1501–1517.

    Article  CAS  PubMed  Google Scholar 

  52. Khodakarimi S, Zarebkohan A, Kahroba H, Omrani M, Sepasi T, Mohaddes G, et al. The role of miRNAs in the regulation of autophagy in autoimmune diseases. Life Sci 2021, 287: 119726.

    Article  CAS  PubMed  Google Scholar 

  53. Tsujimoto T, Mori T, Houri K, Onodera Y, Takehara T, Shigi K, et al. MiR-155 inhibits mitophagy through suppression of BAG5, a partner protein of PINK1. Biochem Biophys Res Commun 2020, 523: 707–712.

    Article  CAS  PubMed  Google Scholar 

  54. Kovacs JR, Li C, Yang Q, Li G, Garcia IG, Ju S, et al. Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 2012, 19: 144–152.

    Article  CAS  PubMed  Google Scholar 

  55. Paunovic V, Petrovic IV, Milenkovic M, Janjetovic K, Pravica V, Dujmovic I, et al. Autophagy-independent increase of ATG5 expression in T cells of multiple sclerosis patients. J Neuroimmunol 2018, 319: 100–105.

    Article  CAS  PubMed  Google Scholar 

  56. Bhattacharya A, Parillon X, Zeng S, Han S, Eissa NT. Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis. J Biol Chem 2014, 289: 26525–26532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keller CW, Sina C, Kotur MB, Ramelli G, Mundt S, Quast I, et al. ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4+ T cell pathogenicity during CNS inflammation. Proc Natl Acad Sci U S A 2017, 114: E11228–E11237.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Keller CW, Lünemann JD. Noncanonical autophagy in dendritic cells triggers CNS autoimmunity. Autophagy 2018, 14: 560–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Patergnani S, Castellazzi M, Bonora M, Marchi S, Casetta I, Pugliatti M, et al. Autophagy and mitophagy elements are increased in body fluids of multiple sclerosis-affected individuals. J Neurol Neurosurg Psychiatry 2018, 89: 439–441.

    Article  PubMed  Google Scholar 

  60. Joodi Khanghah O, Nourazarian A, Khaki-Khatibi F, Nikanfar M, Laghousi D, Vatankhah AM, et al. Evaluation of the diagnostic and predictive value of serum levels of ANT1, ATG5, and parkin in multiple sclerosis. Clin Neurol Neurosurg 2020, 197: 106197.

    Article  PubMed  Google Scholar 

  61. Hassanpour M, Cheraghi O, Laghusi D, Nouri M, Panahi Y. The relationship between ANT1 and NFL with autophagy and mitophagy markers in patients with multiple sclerosis. J Clin Neurosci 2020, 78: 307–312.

    Article  CAS  PubMed  Google Scholar 

  62. Ebrahimkhani S, Vafaee F, Young PE, Hur SSJ, Hawke S, Devenney E, et al. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep 2017, 7: 14293.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  63. Yin L, Liu J, Dong H, Xu E, Qiao Y, Wang L, et al. Autophagy-related gene16L2, a potential serum biomarker of multiple sclerosis evaluated by bead-based proteomic technology. Neurosci Lett 2014, 562: 34–38.

    Article  CAS  PubMed  Google Scholar 

  64. Liang P, Le W. Role of autophagy in the pathogenesis of multiple sclerosis. Neurosci Bull 2015, 31: 435–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hou C, Zhu M, Sun M, Lin Y. MicroRNA let-7i induced autophagy to protect T cell from apoptosis by targeting IGF1R. Biochem Biophys Res Commun 2014, 453: 728–734.

    Article  CAS  PubMed  Google Scholar 

  66. Kimura K, Hohjoh H, Fukuoka M, Sato W, Oki S, Tomi C, et al. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat Commun 2018, 9: 17.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  67. Geffken SJ, Moon S, Smith CO, Tang S, Lee HH, Lewis K, et al. Insulin and IGF-1 elicit robust transcriptional regulation to modulate autophagy in astrocytes. Mol Metab 2022, 66: 101647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lorzadeh S, Kohan L, Ghavami S, Azarpira N. Autophagy and the Wnt signaling pathway: A focus on Wnt/β-catenin signaling. Biochim Biophys Acta Mol Cell Res 2021, 1868: 118926.

    Article  CAS  PubMed  Google Scholar 

  69. Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci U S A 2017, 114: E1168–E1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van den Broek B, Pintelon I, Hamad I, Kessels S, Haidar M, Hellings N, et al. Microglial derived extracellular vesicles activate autophagy and mediate multi-target signaling to maintain cellular homeostasis. J Extracell Vesicles 2020, 10: e12022.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Albert M, Barrantes-Freer A, Lohrberg M, Antel JP, Prineas JW, Palkovits M, et al. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis. Brain Pathol 2017, 27: 737–747.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Patergnani S, Bonora M, Ingusci S, Previati M, Marchi S, Zucchini S, et al. Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proc Natl Acad Sci U S A 2021, 118: e2020078118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dang S, Xu H, Xu C, Cai W, Li Q, Cheng Y, et al. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy 2014, 10: 1301–1315.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Williams JL, Gatson NN, Smith KM, Almad A, McTigue DM, Whitacre CC. Serum exosomes in pregnancy-associated immune modulation and neuroprotection during CNS autoimmunity. Clin Immunol 2013, 149: 236–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu L, Yang F, Jiang L, Chen Y, Wang K, Xu F, et al. Exosomes with membrane-associated TGF-β1 from gene-modified dendritic cells inhibit murine EAE independently of MHC restriction. Eur J Immunol 2013, 43: 2461–2472.

    Article  CAS  PubMed  Google Scholar 

  76. Farinazzo A, Angiari S, Turano E, Bistaffa E, Dusi S, Ruggieri S, et al. Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis. Sci Rep 2018, 8: 7473.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  77. Xun C, Deng H, Zhao J, Ge L, Hu Z. Mesenchymal stromal cell extracellular vesicles for multiple sclerosis in preclinical rodent models: A meta-analysis. Front Immunol 2022, 13: 972247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jarius S, Wildemann B. The history of neuromyelitis optica. J Neuroinflammation 2013, 10: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol 2007, 6: 805–815.

    Article  CAS  PubMed  Google Scholar 

  80. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015, 85: 177–189.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Flanagan EP, Cabre P, Weinshenker BG, Sauver JS, Jacobson DJ, Majed M, et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann Neurol 2016, 79: 775–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, et al. A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. Lancet 2004, 364: 2106–2112.

    Article  CAS  PubMed  Google Scholar 

  83. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005, 202: 473–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: Lessons learned from neuromyelitis optica. Brain Pathol 2014, 24: 83–97.

    Article  CAS  PubMed  Google Scholar 

  85. Bradl M, Lassmann H. Experimental models of neuromyelitis optica. Brain Pathol 2014, 24: 74–82.

    Article  CAS  PubMed  Google Scholar 

  86. Takano R, Misu T, Takahashi T, Sato S, Fujihara K, Itoyama Y. Astrocytic damage is far more severe than demyelination in NMO: A clinical CSF biomarker study. Neurology 2010, 75: 208–216.

    Article  CAS  PubMed  Google Scholar 

  87. Lee J, McKinney KQ, Pavlopoulos AJ, Han MH, Kim SH, Kim HJ, et al. Exosomal proteome analysis of cerebrospinal fluid detects biosignatures of neuromyelitis optica and multiple sclerosis. Clin Chim Acta 2016, 462: 118–126.

    Article  CAS  PubMed  Google Scholar 

  88. Bastos P, Ferreira R, Manadas B, Moreira PI, Vitorino R. Insights into the human brain proteome: Disclosing the biological meaning of protein networks in cerebrospinal fluid. Crit Rev Clin Lab Sci 2017, 54: 185–204.

    Article  CAS  PubMed  Google Scholar 

  89. Barnett MH, Prineas JW, Buckland ME, Parratt JDE, Pollard JD. Massive astrocyte destruction in neuromyelitis optica despite natalizumab therapy. Mult Scler 2012, 18: 108–112.

    Article  CAS  PubMed  Google Scholar 

  90. Uzawa A, Mori M, Kuwabara S. Cytokines and chemokines in neuromyelitis optica: Pathogenetic and therapeutic implications. Brain Pathol 2014, 24: 67–73.

    Article  CAS  PubMed  Google Scholar 

  91. Correale J, Fiol M. Activation of humoral immunity and eosinophils in neuromyelitis optica. Neurology 2004, 63: 2363–2370.

    Article  PubMed  Google Scholar 

  92. Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S, et al. Cytokine and chemokine profiles in neuromyelitis optica: Significance of interleukin-6. Mult Scler 2010, 16: 1443–1452.

    Article  CAS  PubMed  Google Scholar 

  93. Wang H, Wang K, Wang C, Xu F, Zhong X, Qiu W, et al. Cerebrospinal fluid high-mobility group box protein 1 in neuromyelitis optica and multiple sclerosis. Neuroimmunomodulation 2013, 20: 113–118.

    Article  PubMed  Google Scholar 

  94. Reed M, Morris SH, Owczarczyk AB, Lukacs NW. Deficiency of autophagy protein Map1-LC3b mediates IL-17-dependent lung pathology during respiratory viral infection via ER stress-associated IL-1. Mucosal Immunol 2015, 8: 1118–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou Y, Wu PW, Yuan XW, Li J, Shi XL. Interleukin-17A inhibits cell autophagy under starvation and promotes cell migration via TAB2/TAB3-p38 mitogen-activated protein kinase pathways in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2016, 20: 250–263.

    CAS  PubMed  Google Scholar 

  96. Liu H, Mi S, Li Z, Hua F, Hu ZW. Interleukin 17A inhibits autophagy through activation of PIK3CA to interrupt the GSK3B-mediated degradation of BCL2 in lung epithelial cells. Autophagy 2013, 9: 730–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 2007, 27: 505–517.

    Article  CAS  PubMed  Google Scholar 

  98. Uzawa A, Mori M, Masuda S, Muto M, Kuwabara S. CSF high-mobility group box 1 is associated with intrathecal inflammation and astrocytic damage in neuromyelitis optica. J Neurol Neurosurg Psychiatry 2013, 84: 517–522.

    Article  PubMed  Google Scholar 

  99. Uzawa A, Mori M, Sawai S, Masuda S, Muto M, Uchida T, et al. Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin Chim Acta 2013, 421: 181–183.

    Article  CAS  PubMed  Google Scholar 

  100. Chen J, Zhu J, Wang Z, Yao X, Wu X, Liu F, et al. MicroRNAs correlate with multiple sclerosis and neuromyelitis optica spectrum disorder in a Chinese population. Med Sci Monit 2017, 23: 2565–2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang H, Wang D, Tong J, Fang J, Lin Z. MiR-30b-5p attenuates the inflammatory response and facilitates the functional recovery of spinal cord injury by targeting the NEFL/mTOR pathway. Brain Behav 2022, 12: e2788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pan J, Qu M, Li Y, Wang L, Zhang L, Wang Y, et al. MicroRNA-126-3p /-5p overexpression attenuates blood-brain barrier disruption in a mouse model of middle cerebral artery occlusion. Stroke 2020, 51: 619–627.

    Article  CAS  PubMed  Google Scholar 

  103. Romao S, Münz C. LC3-associated phagocytosis. Autophagy 2014, 10: 526–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cho S, Lee H, Jung M, Hong K, Woo SH, Lee YS, et al. Neuromyelitis optica (NMO)-IgG-driven organelle reorganization in human iPSC-derived astrocytes. FASEB J 2021, 35: e21894.

    Article  CAS  PubMed  Google Scholar 

  105. Oliva L, Cenci S. Autophagy in plasma cell pathophysiology. Front Immunol 2014, 5: 103.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 2009, 66: 617–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhong X, Wang H, Dai Y, Wu A, Bao J, Xu W, et al. Cerebrospinal fluid levels of CXCL13 are elevated in neuromyelitis optica. J Neuroimmunol 2011, 240(241): 104–108.

    Article  PubMed  Google Scholar 

  108. Alvarez E, Piccio L, Mikesell RJ, Klawiter EC, Parks BJ, Naismith RT, et al. CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Mult Scler 2013, 19: 1204–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yuvaraj S, Griffin AC, Sundaram K, Kirkwood KL, Norris JS, Reddy SV. A novel function of CXCL13 to stimulate RANK ligand expression in oral squamous cell carcinoma cells. Mol Cancer Res 2009, 7: 1399–1407.

    Article  CAS  PubMed  Google Scholar 

  110. Sambandam Y, Sakamuri S, Balasubramanian S, Haque A. RANK ligand modulation of autophagy in oral squamous cell carcinoma tumor cells. J Cell Biochem 2016, 117: 118–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F, Raimondi A, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol 2013, 14: 298–305.

    Article  CAS  PubMed  Google Scholar 

  112. Gilhus NE, Verschuuren JJ. Myasthenia gravis: Subgroup classification and therapeutic strategies. Lancet Neurol 2015, 14: 1023–1036.

    Article  CAS  PubMed  Google Scholar 

  113. Dalakas MC. Immunotherapy in myasthenia gravis in the era of biologics. Nat Rev Neurol 2019, 15: 113–124.

    Article  PubMed  Google Scholar 

  114. Kister I, Gulati S, Boz C, Bergamaschi R, Piccolo G, Oger J, et al. Neuromyelitis optica in patients with myasthenia gravis who underwent thymectomy. Arch Neurol 2006, 63: 851–856.

    Article  PubMed  Google Scholar 

  115. Choi Decroos E, Hobson-Webb LD, Juel VC, Massey JM, Sanders DB. Do acetylcholine receptor and striated muscle antibodies predict the presence of thymoma in patients with myasthenia gravis? Muscle Nerve 2014, 49: 30–34.

    Article  PubMed  Google Scholar 

  116. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat Immunol 2014, 15: 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  117. Sudres M, Maurer M, Robinet M, Bismuth J, Truffault F, Girard D, et al. Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model. JCI Insight 2017, 2: e89665.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kong QF, Sun B, Wang GY, Zhai DX, Mu LL, Wang DD, et al. BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO. Eur J Immunol 2009, 39: 800–809.

    Article  CAS  PubMed  Google Scholar 

  119. Li XL, Liu Y, Cao LL, Li H, Yue LT, Wang S, et al. Atorvastatin-modified dendritic cells in vitro ameliorate experimental autoimmune myasthenia gravis by up-regulated Treg cells and shifted Th1/Th17 to Th2 cytokines. Mol Cell Neurosci 2013, 56: 85–95.

    Article  CAS  PubMed  Google Scholar 

  120. Li XL, Li H, Zhang M, Xu H, Yue LT, Zhang XX, et al. Correction to: Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway. J Neuroinflammation 2019, 16: 119.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bu N, Wu HQ, Zhang GL, Zhan SQ, Zhang R, Fan QY, et al. Immature dendritic cell exosomes suppress experimental autoimmune myasthenia gravis. J Neuroimmunol 2015, 285: 71–75.

    Article  CAS  PubMed  Google Scholar 

  122. Yin W, Ouyang S, Luo Z, Zeng Q, Hu B, Xu L, et al. Immature exosomes derived from microRNA-146a overexpressing dendritic cells act as antigen-specific therapy for myasthenia gravis. Inflammation 2017, 40: 1460–1473.

    Article  CAS  PubMed  Google Scholar 

  123. Gong H, Chen H, Xiao P, Huang N, Han X, Zhang J, et al. MiR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD+/SIRT inactivation. Signal Transduct Target Ther 2022, 7: 66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Punga AR, Punga T. Circulating microRNAs as potential biomarkers in myasthenia gravis patients. Ann N Y Acad Sci 2018, 1412: 33–40.

    Article  CAS  PubMed  ADS  Google Scholar 

  125. Nogales-Gadea G, Ramos-Fransi A, Suárez-Calvet X, Navas M, Rojas-García R, Mosquera JL, et al. Analysis of serum miRNA profiles of myasthenia gravis patients. PLoS One 2014, 9: e91927.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  126. Punga AR, Andersson M, Alimohammadi M, Punga T. Disease specific signature of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients. J Neurol Sci 2015, 356: 90–96.

    Article  CAS  PubMed  Google Scholar 

  127. Punga T, Bartoccioni E, Lewandowska M, Damato V, Evoli A, Punga AR. Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis. J Neuroimmunol 2016, 292: 21–26.

    Article  CAS  PubMed  Google Scholar 

  128. Zhong H, Lu J, Jing S, Xi J, Yan C, Song J, et al. Low-dose rituximab lowers serum Exosomal miR-150-5p in AChR-positive refractory myasthenia gravis patients. J Neuroimmunol 2020, 348: 577383.

    Article  CAS  PubMed  Google Scholar 

  129. Heindryckx F, Binet F, Ponticos M, Rombouts K, Lau J, Kreuger J, et al. Endoplasmic reticulum stress enhances fibrosis through IRE1α-mediated degradation of miR-150 and XBP-1 splicing. EMBO Mol Med 2016, 8: 729–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang S, Huang Y, Zhou C, Wu H, Zhao J, Wu L, et al. The role of autophagy and related microRNAs in inflammatory bowel disease. Gastroenterol Res Pract 2018, 2018: 7565076.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Liu X, Fu B, Chen D, Hong Q, Cui J, Li J, et al. MiR-184 and miR-150 promote renal glomerular mesangial cell aging by targeting Rab1a and Rab31. Exp Cell Res 2015, 336: 192–203.

    Article  CAS  PubMed  Google Scholar 

  132. Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ 2014, 21: 348–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yuan M, Yang X, Duscher D, Xiong H, Ren S, Xu X, et al. Overexpression of microRNA-21-5p prevents the oxidative stress-induced apoptosis of RSC96 cells by suppressing autophagy. Life Sci 2020, 256: 118022.

    Article  CAS  PubMed  Google Scholar 

  134. Sabre L, Maddison P, Sadalage G, Ambrose PA, Punga AR. Circulating microRNA miR-21-5p, miR-150-5p and miR-30e-5p correlate with clinical status in late onset myasthenia gravis. J Neuroimmunol 2018, 321: 164–170.

    Article  CAS  PubMed  Google Scholar 

  135. Jiang Y, Xie H, Tu W, Fang H, Ji C, Yan T, et al. Exosomes secreted by HUVECs attenuate hypoxia/reoxygenation-induced apoptosis in neural cells by suppressing miR-21-3p. Am J Transl Res 2018, 10: 3529–3541.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang P, Sun D, Jiang F. Ailanthone promotes human vestibular schwannoma cell apoptosis and autophagy by downregulation of miR-21. Oncol Res 2018, 26: 941–948.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  137. Liao CC, Ho MY, Liang SM, Liang CM. Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P. Autophagy 2018, 14: 2065–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pannuru P, Dontula R, Khan AA, Herbert E, Ozer H, Chetty C, et al. MiR-let-7f-1 regulates SPARC mediated cisplatin resistance in medulloblastoma cells. Cell Signal 2014, 26: 2193–2201.

    Article  CAS  PubMed  Google Scholar 

  139. Du A, Huang S, Zhao X, Feng K, Zhang S, Huang J, et al. Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis. Autophagy 2017, 13: 1981–1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hou Z, Zhou Y, Yang H, Liu Y, Mao X, Qin X, et al. Alpha7 nicotinic acetylcholine receptor activation protects against myocardial reperfusion injury through modulation of autophagy. Biochem Biophys Res Commun 2018, 500: 357–364.

    Article  CAS  PubMed  Google Scholar 

  141. Khan MM, Strack S, Wild F, Hanashima A, Gasch A, Brohm K, et al. Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy 2014, 10: 123–136.

    Article  CAS  PubMed  Google Scholar 

  142. Navaneetham D, Penn A, Howard J Jr, Conti-Fine BM. Expression of the alpha 7 subunit of the nicotinic acetylcholine receptor in normal and myasthenic human thymuses. Cell Mol Biol 1997, 43: 433–442.

    CAS  PubMed  Google Scholar 

  143. Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, et al. Autophagy plays an important role in anti-inflammatory mechanisms stimulated by Alpha7 nicotinic acetylcholine receptor. Front Immunol 2017, 8: 553.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B. Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci 2016, 10: 109.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sejvar JJ, Baughman AL, Wise M, Morgan OW. Population incidence of Guillain–Barré syndrome: A systematic review and meta-analysis. Neuroepidemiology 2011, 36: 123–133.

    Article  PubMed  Google Scholar 

  146. Yuki N, Hartung HP. Guillain–Barré syndrome. N Engl J Med 2012, 366: 2294–2304.

    Article  CAS  PubMed  Google Scholar 

  147. van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA. Guillain–Barré syndrome: Pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol 2014, 10: 469–482.

    Article  PubMed  Google Scholar 

  148. Dos Santos T, Rodriguez A, Almiron M, Sanhueza A, Ramon P, de Oliveira WK, et al. Zika virus and the Guillain–Barré syndrome - case series from seven countries. N Engl J Med 2016, 375: 1598–1601.

    Article  PubMed  Google Scholar 

  149. de Oliveira WK, Carmo EH, Henriques CM, Coelho G, Vazquez E, Cortez-Escalante J, et al. Zika virus infection and associated neurologic disorders in Brazil. N Engl J Med 2017, 376: 1591–1593.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Du T, Yang CL, Ge MR, Liu Y, Zhang P, Li H, et al. M1 macrophage derived exosomes aggravate experimental autoimmune neuritis via modulating Th1 response. Front Immunol 2020, 11: 1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A 2013, 110: 12048–12053.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  152. Di YQ, Han XL, Kang XL, Wang D, Chen CH, Wang JX, et al. Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy 2021, 17: 1170–1192.

    Article  CAS  PubMed  Google Scholar 

  153. Wang YZ, Feng XG, Shi QG, Hao YL, Yang Y, Zhang AM, et al. Silencing of miR155 promotes the production of inflammatory mediators in Guillain–Barré syndrome in vitro. Inflammation 2013, 36: 337–345.

    Article  CAS  PubMed  ADS  Google Scholar 

  154. Doncel-Pérez E, Mateos-Hernández L, Pareja E, García-Forcada Á, Villar M, Tobes R, et al. Expression of early growth response gene-2 and regulated cytokines correlates with recovery from Guillain–Barré syndrome. J Immunol 2016, 196: 1102–1107.

    Article  PubMed  Google Scholar 

  155. Hu Z, Cai M, Zhang Y, Tao L, Guo R. MiR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway. Cell Cycle 2020, 19: 193–206.

    Article  CAS  PubMed  Google Scholar 

  156. Wang R, Yao J, Gong F, Chen S, He Y, Hu C, et al. MiR-29c-3p regulates TET2 expression and inhibits autophagy process in Parkinson’s disease models. Genes Cells 2021, 26: 684–697.

    Article  CAS  PubMed  Google Scholar 

  157. Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 2015, 520: 563–566.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  158. Peng J, Yang Q, Li AF, Li RQ, Wang Z, Liu LS, et al. Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE-/ - mice. Oncotarget 2016, 7: 76423–76436.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Mateos-Hernández L, Villar M, Doncel-Pérez E, Trevisan-Herraz M, García-Forcada Á, Ganuza FR, et al. Quantitative proteomics reveals Piccolo as a candidate serological correlate of recovery from Guillain–Barré syndrome. Oncotarget 2016, 7: 74582–74591.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zhou S, Chen X, Xue R, Zhou Q, Hu P, Ouyang X, et al. Autophagy is involved in the pathogenesis of experimental autoimmune neuritis in rats. Neuroreport 2016, 27: 337–344.

    Article  CAS  PubMed  Google Scholar 

  161. Jang SY, Yoon BA, Shin YK, Yun SH, Jo YR, Choi YY, et al. Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination. Glia 2017, 65: 1848–1862.

    Article  PubMed  Google Scholar 

  162. Sun X, Threadgill D, Jobin C. Campylobacter jejuni induces colitis through activation of mammalian target of rapamycin signaling. Gastroenterology 2012, 142: 86-95.e5.

    Article  CAS  PubMed  Google Scholar 

  163. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JLM, Guimarães KP, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016, 534: 267–271.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  164. Wei J, Fujita M, Nakai M, Waragai M, Sekigawa A, Sugama S, et al. Protective role of endogenous gangliosides for lysosomal pathology in a cellular model of synucleinopathies. Am J Pathol 2009, 174: 1891–1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Li L, Tian J, Long MK, Chen Y, Lu J, Zhou C, et al. Protection against experimental stroke by ganglioside GM1 is associated with the inhibition of autophagy. PLoS One 2016, 11: e0144219.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Dai R, Zhang S, Duan W, Wei R, Chen H, Cai W, et al. Enhanced autophagy contributes to protective effects of GM1 ganglioside against Aβ1-42-induced neurotoxicity and cognitive deficits. Neurochem Res 2017, 42: 2417–2426.

    Article  CAS  PubMed  Google Scholar 

  167. Meng H, Wang L, He J, Wang Z. The protective effect of gangliosides on lead (Pb)-induced neurotoxicity is mediated by autophagic pathways. Int J Environ Res Public Health 2016, 13: 365.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Celet B, Akman-Demir G, Serdaroğlu P, Yentür SP, Taşci B, van Noort JM, et al. Anti-alpha B-crystallin immunoreactivity in inflammatory nervous system diseases. J Neurol 2000, 247: 935–939.

    Article  CAS  PubMed  Google Scholar 

  169. Lu SZ, Guo YS, Liang PZ, Zhang SZ, Yin S, Yin YQ, et al. Suppression of astrocytic autophagy by αB-crystallin contributes to α-synuclein inclusion formation. Transl Neurodegener 2019, 8: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Chang KH, Chuang TJ, Lyu RK, Ro LS, Wu YR, Chang HS, et al. Identification of gene networks and pathways associated with Guillain–Barré syndrome. PLoS One 2012, 7: e29506.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  171. Wang JD, Cao YL, Li Q, Yang YP, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy 2015, 11: 2057–2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim YH, Kwak MS, Shin JM, Hayuningtyas RA, Choi JE, Shin JS. Inflachromene inhibits autophagy through modulation of Beclin 1 activity. J Cell Sci 2018, 131: jcs211201.

    Article  PubMed  Google Scholar 

  173. Li WD, Hu N, Lei FR, Wei S, Rong JJ, Zhuang H, et al. Autophagy inhibits endothelial progenitor cells migration via the regulation of MMP2, MMP9 and uPA under normoxia condition. Biochem Biophys Res Commun 2015, 466: 376–380.

    Article  CAS  PubMed  Google Scholar 

  174. Qiang L, Sample A, Shea CR, Soltani K, MacLeod KF, He YY. Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy 2017, 13: 2086–2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Marinelli S, Nazio F, Tinari A, Ciarlo L, D’Amelio M, Pieroni L, et al. Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain 2014, 155: 93–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Key Research and Development Project of Stem Cell and Translational Research by the Ministry of Science and Technology (2020YFA0113100), Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU-ZDCX20211901), the National Natural Science Foundation of China (82071341), and the Key Projects of Basic Research of Shanghai Municipal Science and Technology Commission (20JC1412000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Cai or Yangtai Guan.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, X., Yu, H., Cai, Y. et al. Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-024-01183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-024-01183-5

Keywords

Navigation