Skip to main content
Log in

Soil sampling and sensed ancillary data requirements for soil mapping in precision agriculture I. delineation of management zones to determine zone averages of soil properties

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Sensed and soil sample data are used in two main approaches for mapping soil properties in precision agriculture: management zones (MZs) and contour maps. This is the first of two papers that explores maps of MZs. Management zones based on variation in sensed data that are related to the more permanent soil properties assume that the zones are multi-purpose. Soil properties are then often sampled on a grid to provide the average values of each property per zone. This paper examines the plausibility of this approach by examining how the number of samples taken on a grid and the application of kriging affect mean soil property values for MZs. The suitability of MZs based on ancillary data for managing several agronomically important properties simultaneously is also considered. These concepts are examined with historic soil data from four field sites in southern UK with different scales of spatial variation. Results showed that when the grid sampling interval is large, there is less difference in the means of properties between MZs, but kriging the soil data increased the differences between zones when the sampling interval was large and sample small. Sensed data are used increasingly to aid the identification of MZs, but these could not be considered multi-purpose at all sites. The MZs produced were most useful for phosphorus (P), pH and volumetric water content (VWC) at the Wallingford site and useful for most properties at the Clays and Y215 sites. For the latter site this was true only when the most dense data were used to calculate MZ averages. The results show that sampling interval for MZ averages should relate to the scale of variation or the size of the MZs at a site. The sampling density could be based on the variogram range of ancillary data. This research suggests that there should be 6–8 samples per zone to obtain accurate averages of soil properties. Nutrient data for more than one year were examined at two sites and showed that patterns remained consistent in the short term unless variable-rate management was used, but also the range of values changed in the short term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availablity

The data used in this study are not publicly available but interested parties can contact the corresponding author to discuss data availability.

References

  • Adamchuk, V. I., Biswas, A., Huang, H., Holland, J. E., Taylor, J. A., Stenberg, B., Wetterlind, J., Minasny, B., Fidelis, C., Yinil, D., Sanderson, T., Snoeck, D., & Field, D. J. (2021). Soil Sensing. In R. Kerry & A. Escolà (Eds.), Sensing Approaches for Precision Agriculture (p. 415). Springer.

    Google Scholar 

  • Anastasiou, E., Castrignanò, A., Arvanitis, K., & Fountas, S. (2019). A multi-source data fusion approach to assess spatial-temporal variability and delineate homogeneous zones: A use case in a table grape vineyard in Greece. Science of the Total Environment, 684, 155–163.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Atkinson, P. M., & Tate, N. J. (2000). Spatial scale problems and geostatistical solutions: A review. The Professional Geographer, 52(4), 607–623.

    Article  MATH  Google Scholar 

  • Babaeian, E., Paheding, S., Siddique, N., Devabhaktuni, V. K., & Tuller, M. (2021). Es-timation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning. Remote Sensing of Environment, 260, 112434.

    Article  Google Scholar 

  • Barbedo, A., & Garcia, J. (2022). Data fusion in agriculture: Resolving ambiguities and closing data gaps. Sensors, 22, 2285.

    Article  PubMed  PubMed Central  MATH  ADS  Google Scholar 

  • Buss, R. N., Silva, R. A., Guedes, O., & Siqueira, G. M. (2022). Management zones design for soybean crop using principal components and geostatistics. Revista Caatinga, 35, 925–935.

    Article  Google Scholar 

  • Castrignanò, A., Wong, M. T. F., Stelluti, M., De Benedetto, D., & Sollitto, D. (2012). Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma, 175, 78–89.

    Article  MATH  ADS  Google Scholar 

  • Castrignanò, A., Buttafuoco, G., Quarto, R., Vitti, C., Langella, G., Terribile, F., & Venezia, A. (2017). A combined approach of sensor data fusion and multivariate geostatistics for delineation of homogeneous zones in an agricultural field. Sensors, 17, 2794.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Castrignano, A., Buttafuoco, G., Quarto, R., Parisi, D., Viscarra-Rossel, R. A., Terribile, F., Langella, G., & Venezia, A. (2018). A geostatistical sensor data fusion approach for delineating homogeneous management zones in precision agriculture. CATENA, 167, 293–304.

    Article  Google Scholar 

  • Cohen, Y., Vellidis, G., Campillo, C., Liakos, V., Graff, N., Saranga, Y., Snider, J. L., Casadesús, J., Millán, S., & del Henar Prieto, M. (2021). Applications of Sensing to Precision Irrigation. In R. Kerry & A. Escolà (Eds.), Sensing Approaches for Precision Agriculture (p. 415). Springer.

    Google Scholar 

  • IBM Corp. Released (2021). IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY.

  • De Benedetto, D., Castrignano, A., Diacono, M., Rinaldi, M., Ruggieri, S., & Tambor-rino, R. (2013). Field partition by proximal and remote sensing data fusion. Biosystems Engineering, 114, 372–383.

    Article  MATH  Google Scholar 

  • Delalibera, H. C., Neto, P. H. W., & Nagata, N. (2012). Management zones in agriculture according to the soil and landscape variables. Engenharia Agricola, 32, 1197–1204.

    Article  Google Scholar 

  • Erickson, B. & Lowenberg-DeBoer, J., 2022. Precision Agriculture Dealership Survey, Purdue University, pp.1–29. https://ag.purdue.edu/digitalag/_media/croplife-report-2022.pdf

  • Farid, H. U., Bakhsh, A., Ahmad, N., Ahmad, A., & Mahmood-Khan, Z. (2016). Delineating site-specific management zones for precision agriculture. Journal of Agricultural Science, 154, 273–286.

    Article  MATH  Google Scholar 

  • Ferguson, R. B. & Hergert, G. W. (2023) Soil Sampling for Precision Agriculture. University of Nebraska Cooperative Extensioin EC 00–154. https://cropwatch.unl.edu/documents/Soil%20Sampling%20for%20Precision%20Agriculture%2C%20EC154.pdf

  • Fordham, S.J. (1985). Soils of Crowmarsh Battle Farms, Vol. private, Soil Survey of England and Wales.

  • Franzen, D. (2023) Developing Zone Soil Sampling Maps NDSU Extension, SF1176–2 https://www.ndsu.edu/agriculture/sites/default/files/2023-03/sf1176-2.pdf

  • Frogbrook, Z. L., & Oliver, M. A. (2007). Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data. Soil Use and Management, 23, 40–51.

    Article  MATH  Google Scholar 

  • Frogbrook, Z. L., Oliver, M. A., & Derricourt, K. E. (2003). Exploring the spatial relations between soil properties and Electro-magnetic Induction (EMI) and the implications for management. In J. V. Stafford & A. Werner (Eds.), Precision Agriculture (pp. 217–222). Wageningen Academic Publishers.

    MATH  Google Scholar 

  • Frogbrook, Z. L., & Oliver, M. A. (2000). The effects of sampling on the accuracy of predictions of soils properties for precision agriculture. In G. B. M. Heuvelink & M. J. P. M. Lemmens (Eds.), Accuracy 2000. Proceedings of the 4th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences in Amsterdam (pp. 225–232). Delft, The Netherlands: Delft University Press.

  • Gavioli, A., Souza, E. G., Bazzi, C. L., Guedes, L. P. C., & Schenatto, K. (2016). Optimization of management zone delineation by using spatial principal components. Computers and Electronics in Agriculture, 127, 302–310.

    Article  Google Scholar 

  • Gavioli, A., de Souza, E. G., Bazzi, C. L., Schenatto, K., & Betzek, N. M. (2019). Identification of management zones in precision agriculture: An evaluation of alternative cluster analysis methods. Biosystems Engineering, 181, 86–102.

    Article  Google Scholar 

  • Godwin, R. J., & Miller, P. C. H. (2003). A review of the technologies for mapping within-field variability. Biosystems Engineering, 84, 393–407.

    Article  MATH  Google Scholar 

  • Goovaerts, P., & Kerry, R. (2010). Using Ancillary Data to Improve Prediction of Soil and Crop Attributes in Precision Agriculture. In M. A. Oliver (Ed.), Geostatistical Applications for Precision Agriculture (pp. 167–194). Springer.

    Chapter  MATH  Google Scholar 

  • Hayes, R. C., Rohan, M., Li, G. D., Orgill, S. E., Poile, G. J., Oates, A. A., & Conyers, M. K. (2022). The nature of spatial variability of four soil chemical properties and the implications for soil sampling. Journal of Soils and Sediments, 22, 3006–3017.

    Article  CAS  Google Scholar 

  • Heming, S. (1997). Soil survey and soil data base of part of Westridge Farm and Mapletons Farm for Yattendon Estates. Soil Services Limited.

    MATH  Google Scholar 

  • Ikenaga, S., & Inamura, T. (2008). Evaluation of site-specific management zones on a farm with 124 contiguous small paddy fields in a multiple-cropping system. Precision Agriculture, 9, 147–159.

    Article  MATH  Google Scholar 

  • IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

  • Jacquez, G. M., Goovaerts, P., Kaufmann, A., & Rommel, R. (2014). SpaceStat 4.0 user manual: Software for the space-time analysis of dynamic complex systems (4th ed.). BioMedware.

    MATH  Google Scholar 

  • Jiang, H. L., Liu, G. S., Wang, R., Liu, S. D., Han, F. G., Yang, Y. F., Ye, X. F., Zhang, Q. J., Wang, X. J., Wang, Z. H., & Hu, H. C. (2011). Delineating site-specific quality-based management zones for a tobacco field. Soil Science, 176, 206–212.

    Article  CAS  MATH  ADS  Google Scholar 

  • Kerry, R., & Escolà, A. (2021). Sensing Approaches for Precision Agriculture (p. 415). Switzerland: Springer.

    Book  MATH  Google Scholar 

  • Kerry, R., & Oliver, M. A. (2003a). Co-kriging when the soil and ancillary data are not co-located. In J. V. Stafford & A. Werner (Eds.), Precision Agriculture (pp. 303–308). Wageningen Academic Publishers, Wageningen.

    MATH  Google Scholar 

  • Kerry, R., & Oliver, M. A. (2003b). Variograms of ancillary data to aid sampling for soil surveys. Precision Agriculture, 4, 261–278.

    Article  MATH  Google Scholar 

  • Kerry, R., & Oliver, M. A. (2004). Average variograms to guide soil sampling for land management. The International Journal of Applied Earth Observation and Geoinformation, 5, 307–325.

    Article  MATH  ADS  Google Scholar 

  • Kerry, R., & Oliver, M. A. (2008). Determining nugget:Sill ratios of standardized variograms from aerial photographs to krige sparse soil data. Precision Agriculture, 9, 33–56.

    Article  Google Scholar 

  • Kerry, R., & Oliver, M. A. (2011). Soil Geomorphology: Identifying links between processes and the scale of spatial variation using the variogram. Geomorphology, 130, 40–54.

    Article  MATH  ADS  Google Scholar 

  • Kerry, R., Ingram, B., Oliver, M. A., & Frogbrook, Z. L. (2024). Soil sampling and sensed ancillary data requirements for soil mapping in precision agriculture II: Contour mapping of soil properties with sensed Z-score data for comparison with management zone averages. Precision Agriculture. https://doi.org/10.1007/s11119-023-10108-7

    Article  Google Scholar 

  • Kerry (2004) Determining the effect of parent material and topography on the structure of spatial variation in soil properties for precision agriculture. PhD Thesis, University of Reading, UK.

  • Khosla, R., Inman, D., Westfall, D. G., Reich, R. M., Frasier, M., & Mzuku, M. (2008). A synthesis of multi-disciplinary research in precision agriculture: Site-specific management zones in the semi-arid western Great Plains of the USA. Precision Agriculture, 9, 85–100.

    Article  Google Scholar 

  • Mazur, P., Gozdowski, D., & Wójcik-Gront, E. (2022). Soil electrical conductivity and satellite-derived vegetation indices for evaluation of phosphorus, potassium and magnesium content, pH, and delineation of within-field management zones. Agriculture-Basel., 12, 883.

    Article  CAS  Google Scholar 

  • Méndez-Vázquez, L. J., Lira-Noriega, A., Lasa-Covarrubias, R., & Cerdeira-Estrada, S. (2019). Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modelling Approaches. Computers and Electronics in Agriculture, 167, 105101.

    Article  Google Scholar 

  • Munnaf, M. A., Haesaert, G., Van Meirvenne, M., & Mouazen, A. M. (2021). Multi-sensors data fusion approach for site-specific seeding of consumption and seed potato production. Precision Agriculture, 22, 1890–1917.

    Article  CAS  Google Scholar 

  • Munnaf, M. A., Haesaert, G., & Mouazen, A. M. (2022). Site-specific seeding for maize production using management zone maps delineated with multi-sensors data fusion scheme. Soil & Tillage Research, 220, 105377.

    Article  MATH  Google Scholar 

  • Oshunsanya, S. O., Oluwasemire, K. O., & Taiwo, O. J. (2017). Use of GIS to Delineate site-specific management zone for precision agriculture. Communications in Soil Science and Plant Analysis, 48, 565–575.

    Article  CAS  Google Scholar 

  • Phillips, J. (1871). Geology of Oxford and the Valley of the Thames. Clarendon Press.

    MATH  Google Scholar 

  • Potash Development Association (PDA) (2011) 24. Soil analysis: key to nutrient management planning. https://www.pda.org.uk/pda_leaflets/24-soil-analysis-key-to-nutrient-management-planning/soil-p-k-and-mg-concentrations-mgl-and-defra-index-scale/

  • QGIS.org, 2002. QGIS 3.28. Geographic Information System Developers Manual. QGIS Association. Electronicdocument: https://docs.qgis.org/3.28/en/docs/developers_guide/index.html

  • Riefolo, C., Belmonte, A., Quarto, R., Quarto, F., Ruggieri, S., & Castrignanò, A. (2022). Potential of GPR data fusion with hyperspectral data for precision agriculture of the future. Computers and Electronics in Agriculture, 199, 107109.

    Article  MATH  Google Scholar 

  • Rodrigues, F. A., Bramley, R. G. V., & Gobbett, D. L. (2015). Proximal soil sensing for precision agriculture: Simultaneous use of electromagnetic induction and gamma radiometrics in contrasting soils. Geoderma, 243, 183–195.

    Article  ADS  Google Scholar 

  • Rogerson, P. A. (2020). Statistical Methods for Geography. A Student’s Guide (5th ed., p. 405). Sage.

    MATH  Google Scholar 

  • Sumbler, M. G. (1996). London and the Thames Valley. HMSO.

    Google Scholar 

  • Tisseyre, B., & McBratney, A. B. (2008). A technical opportunity index based on mathematical morphology for site-specific management: An application to viticulture. Precision Agriculture, 9, 101–113.

    Article  MATH  Google Scholar 

  • Viscarra-Rossel, R. A., & McBratney, A. B. (1998). Soil chemical analytical accuracy and costs: Implications from precision agriculture. Australian Journal of Experimental Agriculture, 38, 765–775.

    Article  Google Scholar 

  • Vitharana, U. W. A., Van Meirvenne, M., Simpson, D., Cockx, L., & De Baerdemaeker, J. (2008). Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma, 143, 206–215.

    Article  CAS  ADS  Google Scholar 

  • Webster, R., & Oiver, M. A. (2007). Geostatistics for Environmental Scientists. John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties. The Journal of Soil Science, 43, 177–192.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The data used in this study were collected as part of research previously funded by the University of Reading, The Home Grown Cereals Authority (HGCA) and the Fertiliser Manufacturer’s Association (FMA). Chris Dawson and Associates collected the 1989 soil survey data for the Wallingford Site and SOYL Ltd collected the data for the 1994 survey of the Wallingford site and ECa data at all sites. We thank Peter King of the Yattendon Estate, Berkshire, UK and Philip Chamberlain of Crowmarsh Battle Farms, Oxfordshire, UK for allowing us to do fieldwork on their farms.

Funding

Home-Grown Cereals Authority,University of Reading,Fertiliser Manufacturers Association,Fertiliser Manufacturer's Association

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Kerry.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 589 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerry, R., Ingram, B., Oliver, M. et al. Soil sampling and sensed ancillary data requirements for soil mapping in precision agriculture I. delineation of management zones to determine zone averages of soil properties. Precision Agric (2024). https://doi.org/10.1007/s11119-023-10107-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11119-023-10107-8

Keywords

Navigation