Skip to main content
Log in

Green Synthesis of Silica Nanoparticles/Nanocomposites for Biomedical Applications: A Narraitive Review

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Nanomedicine showed the unique benefits in clinical outcomes in comparison with traditional and conventional drugs in the treatment of cancer. In the future, nanomedicine therapy seems to pave the way for new treatments in cancer. In this regard, silica nanoparticles are used in various fields of technology, biomedicine and biosensing techniques due to their unique properties such as stability, biocompatibility, high surface area, significant reactivity and functionalizability. Although there are various physical and chemical methods for synthesizing silica nanoparticles, its synthesis by green method has other significant features such as being environmentally friendly, cost-effective, saving time and eliminating toxic compounds and harmful by-products that increase their application in the field of biomedicine. In the method of green synthesis of silica nanoparticles, various sources such as plants, fungi, bacteria, yeast, actinomycetes, etc. are used. In this narraitive review, various biomedical applications of green synthesized silica nanoparticles are discussed along with their examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Ji, X., Wang, H., Song, B., Chu, B., and He, Y., Front. Chem., 2018, no. 6, p. 38. https://doi.org/10.3389/fchem.2018.00038

  2. Asadi, A. and Abdolmaleki, A., Q. Horiz. Med. Sci., 2019, vol. 25, no. 4, pp. 270–281.

    Article  CAS  Google Scholar 

  3. Tîlmaciu, C.M. and Morris, M.C., Front. Chem., 2015, no. 3, p. 59. https://doi.org/10.3389/fchem.2015.00059

  4. Soluki, M., Mahmoudi, F., Abdolmaleki, A., and Asadi, A., J. Rafsanjan Univ. Med. Sci., 2021, vol. 20, no. 9, pp. 1027–1048. https://doi.org/10.52547/jrums.20.9.1027

  5. Liu, J., Lécuyer, T., Seguin, J., Mignet, N., Scherman, D., Viana, B., and Richard, C., Adv. Drug Delivery Rev., 2019, vol. 138, pp. 193–210. https://doi.org/10.1016/j.addr.2018.10.015

  6. Siddique, S. and Chow, J.C., Nanomaterials, 2020, vol. 10, p. 1700. https://doi.org/10.3390/nano10091700

  7. Momen, L.T., Abdolmaleki, A., Asadi, A., and Akram, M., Jentashapir J. Cell. Mol. Biol., 2021, vol. 12, p. e120113. https://doi.org/10.5812/jjcmb.120113

    Article  Google Scholar 

  8. Gholami, A., Asadi, A., Abdolmaleki, A., and Zahri, S., J. Rafsanjan Univ. Med. Sci., 2021, vol. 20, no. 7, pp. 733–746. https://doi.org/10.52547/jrums.20.7.733

  9. Arzanipur, Y., Abdolmaleki, A., Asadi, A., and Zahri, S., Neurosci. J. Shefaye Khatam, 2021, vol. 9, no. 3, pp. 55–63. https://doi.org/10.52547/shefa.9.3.55

  10. Lai, C.H., Hütter, J., Hsu, C.W., Tanaka, H., Varela-Aramburu, S., De Cola, L., and Seeberger, P.H., Nano Lett., 2016, vol. 16, no. 1, pp. 807–811. https://doi.org/10.1021/acs.nanolett.5b04984

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Wang, H. and He, Y., Sensors, 2017, vol. 17, no. 2, p. 268. https://doi.org/10.3390/s17020268

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, H., Jiang, X., and He, Y., Analyst, 2016, vol. 141, no. 17, pp. 5010–5019. https://doi.org/10.1039/C6AN01251E

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wang, Z., Hu, T., Liang, R., and Wei, M., Front. Chem., 2020, vol. 8, p. 320. https://doi.org/10.3389/fchem.2020.00320

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi, Q., Li, L., Huo, C., Zhang, M., and Wang, Y., Chin. Tradit. Herb. Drugs, 2010, vol. 41, no. 10, pp. 1583–1589.

    CAS  Google Scholar 

  15. Fabricant, D.S. and Farnsworth, N.R., Environ. Health Perspect., 2001, vol. 109, no. 1, pp. 69–75. https://doi.org/10.1289/ehp.01109s169.

  16. Gao, X.M., Zhang, T.M., Zhang, J.R., Guo, J.S., Zhong, G.S., et al., Chinese Materia Medica, Beijing: China Press Tradit. Chin. Med., 2007, vol. 323. https://doi.org/10.4236/cm.2012.32014

  17. Yuan, H., Ma, Q., Ye, L. and Piao, G., Molecules, 2016, vol. 21, no. 5, p. 559. https://doi.org/10.3390/molecules21050559

  18. Butler, M.S., Robertson, A.A., and Cooper, M.A., Nat. Prod. Rep., 2014, vol. 31, no. 11, pp. 1612–1661. https://doi.org/10.1039/c4np00064a

  19. Newman, D.J., Cragg, G.M., and Snader, K.M., J. Nat. Prod., 2003, vol. 66, no. 7, pp. 1022–1037. https://doi.org/10.1021/np030096l

  20. Ngo, L.T., Okogun, J.I., and Folk, W.R., Nat. Prod. Rep., 2013, vol. 30, no. 4, pp. 584–592. https://doi.org/10.1039/c3np20120a

  21. Galm, U. and Shen, B., Chem. Biol., 2007, vol. 14, no. 1, pp. 1098–1104. https://doi.org/10.1016/j.chembiol.2007.10.004

  22. Agarwal, H., Kumar, S.V., and Rajeshkumar, S., Resour.-Effic. Technol., 2017, vol. 3, no. 4, pp. 406–413. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  23. Babu, R.H., Yugandhar, P., and Savithramma, N., Bull. Mater. Sci., 2018, vol. 41, p. 65. https://doi.org/10.1007/s12034-018-1584-4

  24. Karande, S.D., Jadhav, S.A., Garud, H.B., Kalantre, V.A., Burungale, S.H., and Patil, P.S., Nanotechnol. Environ. Eng., 2021, vol. 6, no. 2, p. 29. https://doi.org/10.1007/s41204-021-00124-1

    Article  CAS  Google Scholar 

  25. Kazemzadeh, P., Sayadi, K., Toolabi, A., Sayadi, J., Zeraati, M., Chauhan, N.P., et al., Front. Chem., 2022, vol. 14, no. 10, p. 823785. https://doi.org/10.3389/fchem.2022.823785

  26. Rahimzadeh, C.Y., Barzinjy, A.A., Mohammed, A.S., and Hamad, S.M., PLoS One, 2022, vol. 17, no. 8, p. e0268184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salam, H.A., Sivaraj, R., and Venckatesh, R., Mater. Lett., 2014, vol. 131, pp. 16–18. https://doi.org/10.1016/j.matlet.2014.05.033

    Article  CAS  Google Scholar 

  28. Kalpana, V.N. and Devi Rajeswari, V., Bioinorg. Chem. Appl., 2018, vol. 2018, p. 3569758. https://doi.org/10.1155/2018/3569758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gour, A. and Jain, N.K., Artif. Cells, Nanomed., Biotechnol., 2019, vol. 47, no. 1, pp. 844–851. https://doi.org/10.1080/21691401.2019.1577878

    Article  CAS  PubMed  Google Scholar 

  30. Khan, Z.U.H., Khan, A., Chen, Y., Shah, N.S., Muhammad, N., Khan, A.U., Tahir, K., Khan, F.U., Murtaza, B., Hassan, S.U., and Qaisrani, S.A., J. Photochem. Photobiol., B, 2017, vol. 173, pp. 150–164. https://doi.org/10.1016/j.jphotobiol.2017.05.034

  31. Karande, S.D., Jadhav, S.A., Garud, H.B., Kalantre, V.A., Burungale, S.H., and Patil, P.S., Na-notechnol. Environ. Eng., 2021, vol. 6, no. 2, p. 29. https://doi.org/10.1007/s41204-021-00124-1

  32. Dias, L.S. and Alves, A.K., Technological Applications of Nanomaterials, Springer: Cham, 2022, pp. 89–106. https://doi.org/10.1007/978-3-030-86901-4_5

  33. Akhter, F., Rao, A.A., Abbasi, M.N., Wahocho, S.A., Mallah, M.A., Anees-ur-Rehman, H., et al., Silicon, 2022, vol. 14, pp. 8295–8310. https://doi.org/10.1007/s12633-021-01611-5

  34. Shuai, C., Yang, F., Shuai, Y., Peng, S., Chen, S., Deng, Y., et al., J. Adv. Res., 2023, vol. 48, pp. 175–190. https://doi.org/10.1016/j.jare.2022.08.017

    Article  CAS  PubMed  Google Scholar 

  35. Azat, S., Arkhangelsky, E., Papathanasiou, T., Zorpas, A.A., Abirov, A., and Inglezakis, V.J., C. R. Chim., 2020, vol. 23, no. 1, pp. 77–92. https://doi.org/10.5802/crchim.19

    Article  CAS  Google Scholar 

  36. Lu, P. and Hsieh, Y.L., Powder Technol., 2012, vol. 225, pp. 149–155. https://doi.org/10.1016/j.powtec.2012.04.002

    Article  CAS  Google Scholar 

  37. Mohd, N.K., Wee, N.N.A.N., and Azmi, A.A., AIP Conf. Proc., 2017, vol. 1885, no. 1, p. 020123. https://doi.org/10.1063/1.5002317

    Article  CAS  Google Scholar 

  38. Sankar, S., Sharma, S.K., Kaur, N., Lee, B., Kim, D.Y., Lee, S., and Jung, H., Ceram. Int., 2016, vol. 42, no. 4, pp. 4875–4885. https://doi.org/10.1016/j.ceramint.2015.11.172

    Article  CAS  Google Scholar 

  39. Bretin, L., Pinon, A., Bouramtane, S., Ouk, C., Richard, L., Perrin, M.L., Chaunavel, A., Carrion, C., Bregier, F., Sol, V., and Chaleix, V., Cancers, 2019, vol. 11, no. 10, p. 1474. https://doi.org/10.3390/cancers11101474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jabeen, N., Maqbool, Q., Sajjad, S., Minhas, A., Younas, U., Anwaar, S., Nazar, M., Kausar, R., and Hussain, S.Z., IET Nanobiotechnol., 2017, vol. 11, no. 5, pp. 557–561. https://doi.org/10.1049/iet-nbt.2016.0106

  41. Shafiei, N., Nasrollahzadeh, M., and Irava-ni, S., Comments Inorg. Chem., 2021, vol. 41, no. 6, pp. 317–372. https://doi.org/10.1080/02603594.2021.1904912

    Article  CAS  Google Scholar 

  42. Rashidi, S., Asadi, A., and Abdolmaleki, A., J. Rafsanjan Univ. Med. Sci., 2021, vol. 20, pp. 201–226.

    Google Scholar 

  43. Yu, Z., Gao, L., Chen, K., Zhang, W., Zhang, Q., Li, Q., et al., Nanoscale Res. Lett., 2021, vol. 16, no. 1, p. 88. https://doi.org/10.1186/s11671-021-03489-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haq Khan, Z.U., Khan, T.M., Khan, A., Shah, N.S., Muhammad, N., Tahir, K., et al., Front. Chem., 2023, vol. 11, p. 1152217. https://doi.org/10.3389/fchem.2023.1152217

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, Y., Xie, T., Zou, K., Gu, Y., Yang, G., Zhang, F., et al., Nanoscale, 2021, vol. 13, no. 31, pp. 13344–13352. https://doi.org/10.1039/D1NR02418C

    Article  CAS  PubMed  Google Scholar 

  46. Yang, Y. and Yu, C., Nanomed.: Nanotechnol., Biol. Med., 2016, vol. 12, no. 2, pp. 317–332. https://doi.org/10.1016/j.nano.2015.10.018

    Article  CAS  Google Scholar 

  47. Abdolmaleki, A., Asadi, A., Gurushankar, K., Shayan, T.K., and Sarvestani, F.A., Adv. Pharm. Bull., 2021, vol. 11, no. 3, p. 450. https://doi.org/10.34172/apb.2021.052

    Article  CAS  PubMed  Google Scholar 

  48. Gavas, S., Quazi, S., and Karpiński, T.M., Nanoscale Res. Lett., 2021, vol. 16, no. 1, p. 173. https://doi.org/10.1186/s11671-021-03628-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng, Z., Li, M., Dey, R., and Chen, Y., J. Hematol. Oncol., 2021, vol. 14, no. 1, p. 85. https://doi.org/10.1186/s13045-021-01096-0

  50. Mu, Q. and Yan, B., Front. Pharmacol., 2019, vol. 9, p. 1552. https://doi.org/10.3389/fphar.2018.01552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao, C.Y., Cheng, R., Yang, Z., and Tian, Z.M., Molecules, 2018, vol. 23, no. 4, p. 826. https://doi.org/10.3390/molecules23040826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rezaeian, M., Afjoul, H., Shamloo, A., Maleki, A., and Afjoul, N., Nanomedicine, 2021, vol. 16, no. 18, pp. 1581–1593. https://doi.org/10.2217/nnm-2021-0040

    Article  CAS  PubMed  Google Scholar 

  53. Abdolmaleki, A., Khudhur, Z.O., Smail, S.W., Asadi, A., and Amani, A., Clin. Cancer Res., 2021, vol. 13, no. 4, pp. 245–257. https://doi.org/10.1007/s12010-022-03994-6

    Article  CAS  Google Scholar 

  54. Periakaruppan, R., Manju Praveena, S., Priya, C., Ranjitha, P., Gokul Raj, S., and Danaraj, J., Appl. Biochem. Biotechnol., 2022, vol. 194, no. 11, pp. 5594–5605.

    Article  CAS  PubMed  Google Scholar 

  55. Kumar, C.M.K., Yugandhar, P., and Savithramma, N., J. Intercult. Ethnopharmacol., 2016, vol. 5, no. 1, p. 79. https://doi.org/10.5455/jice.20160124113632

  56. Senthilkumar, S.R. and Sivakumar, T., Int. J. Pharm. Pharm. Sci., 2014, vol. 6, no. 6, pp. 461–465. https://www.researchgate.net/publication/279565190.

    Google Scholar 

  57. Tomina, V.V., Furtat, I.M., Lebed, A.P., Kotsyu-da, S.S., Kolev, H., Kanuchova, M., Behunova, D.M., Vaclavikova, M., and Melnyk, I.V., ACS Omega, 2020, vol. 5, no. 25, pp. 15290–15300. https://doi.org/10.1021/acsomega.0c01335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Derbalah, A., Shenashen, M., Hamza, A., Mohamed, A., and El Safty, S., Egypt. J. Basic Appl. Sci., 2018, vol. 5, no. 2, pp. 145–150. https://doi.org/10.1016/j.ejbas.2018.05.002

    Article  Google Scholar 

  59. Razavi, M., Salahinejad, E., Fahmy, M., Yazdimamaghani, M., Vashaee, D., and Tayebi, L., Green Processes for Nanotechnology, Springer: Cham, 2015, pp. 207–235. https://doi.org/10.1007/978-3-319-15461-9_7

  60. Khoshnazar, S.M., Asadi, A., Karimian, A., Abdolmaleki, A., and Bhattacharya, D., Iran. J. Blood Cancer, 2022, vol. 14, no. 2, pp. 92–107. https://doi.org/10.58209/ijbc.14.2.92

  61. Abdolmaleki, A., Karimian, A., Asadi, A., Ghanimi, H.A., and Akram, M., Basic Clin. Cancer Res., 2022, vol. 13, p. 92. https://doi.org/10.18502/bccr.v13i2.10024

    Article  Google Scholar 

  62. Selvarajan, V., Obuobi, S., and Ee, P.L.R., Front. Chem., 2020, vol. 8, p. 602. https://doi.org/10.3389/fchem.2020.00602

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roshancheshm, S., Asadi, A., Khoshnazar, S.M., Abdolmaleki, A., Khudhur, Z.O., and Smail, S.W., Nanomed. J., 2022, vol. 9, no. 3, p. 192. https://doi.org/10.22038/NMJ.2022.65116.1683

    CAS  Google Scholar 

  64. Debnath, S.K. and Srivastava, R., Front. Nanotechnol., 2021, vol. 3, p. 644564. https://doi.org/10.3389/fnano.2021.644564

    Article  Google Scholar 

  65. Kaushik, S., J. Polym. Eng., 2021, pp. 1293–1308. https://doi.org/10.1007/978-3-030-40513-7_39

  66. Malik, A., Khan, J.M., Alhomida, A.S., Ola, M.S., Alshehri, M.A., and Ahmad, A., Chem. Pap., 2022, vol. 76, no. 10, pp. 6073–6095. https://doi.org/10.1007/s11696-022-02351-5

    Article  CAS  Google Scholar 

  67. Mathuri, S., Zhu, Y., Margoni, M.M., and Li, X., Front. Chem., 2021, vol. 9, p. 688320. https://doi.org/10.3389/fchem.2021.688320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elmowafy, E.M., Tiboni, M., and Soliman, M.E., J. Pharm. Invest., 2019, vol. 49, pp. 347–380. https://doi.org/10.1007/s40005-019-00439-x

    Article  CAS  Google Scholar 

  69. Gujrati, M., Malamas, A., Shin, T., Jin, E., Sun, Y., and Lu, Z.R., Mol. Pharmaceutics, 2014, vol. 11, no. 8, pp. 2734–2744. https://doi.org/10.1021/mp400787s

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Mohaghegh Ardabili University for concerning this manuscript.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

A.A conception or design of the work; data collection; data analysis and interpretation; drafting the article. R.H and SM.K data collection; critical revision of the article. A.A data collection; data analysis and interpretation. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to A. Abdolmaleki.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshnazar, S.M., Asadi, A., Holghoomi, R. et al. Green Synthesis of Silica Nanoparticles/Nanocomposites for Biomedical Applications: A Narraitive Review. Biochem. Moscow Suppl. Ser. B 17, 41–49 (2023). https://doi.org/10.1134/S1990750823600085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750823600085

Keywords:

Navigation