Skip to main content
Log in

Effect of Natural Polysaccharides on the Population Density of Klebsiella pneumoniae Isolates In Vitro

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The purpose of the work was to study the influence of natural polysaccharides—arabinogalactan, galactomannan, and carrageenan—on the growth of Klebsiella pneumoniae strains. It was found that carrageenan, especially in high concentrations, most effectively stimulated the growth of these microorganisms. A dependence of the effect of galactomannan on the concentration used was discovered: an inhibitory effect was detected in high doses and a stimulating effect in low doses. Arabinogalactan inhibited the growth of Klebsiella pneumoniae, which could be due to phenolic impurities (bioflavonoids), the presence of which is typical of this polysaccharide. Moreover, this polysaccharide at a concentration of 0.1 mg/mL completely blocked the growth of the studied microbial strains, which can be explained by the antibacterial effect of flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Magill, S.S., Edwards, J.R., Bamberg, W., Beldavs, Z.G., Dumyati, G., Kainer, M.A., et al., Multistate point-prevalence survey of health care–associated infections, N. En-gl. J. Med., 2014, vol. 370, pp. 1198–1208. https://doi.org/10.1056/NEJMoa1306801

    Article  CAS  Google Scholar 

  2. Cubero, M., Grau, I., Tubau, F., Pallares, R., Dominguez, M.A., Linares, J., and Ardanuy, C., Hypervirulent Klebsiella pneumoniae clones causing bacteraemia in adults in a teaching hospital in Barcelona, Spain (2007–2013), Clin. Microbiol. Infect., 2016, vol. 22, pp. 154–160. https://doi.org/10.1016/j.cmi.2015.09.025

    Article  CAS  PubMed  Google Scholar 

  3. Kishibe, S., Okubo, Y., Morino, S., Hirotaki, S., Tame, T., Aoki, K., Ishii, Y., Ota, N., Shimomura, S., Sakakibara, H., et al., Pediatric hypervirulent Klebsiella pneumoniae septic arthritis, Pediatr. Int., 2016, vol. 58, pp. 382–385. https://doi.org/10.1111/ped.12806

    Article  PubMed  Google Scholar 

  4. Russo, T.A. and Marr, C.M., Hypervirulent Klebsiella pneumoniae, Clin. Microbiol. Rev., 2019, vol. 32, no. 3. https://doi.org/10.1128/CMR.00001-19

  5. Navon-Venezia, S., Kondratyeva, K., and Carattoli, A., Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance, FEMS Microbiol. Rev., 2017, vol. 41, pp. 252–275. https://doi.org/10.1093/femsre/fux013

    Article  CAS  PubMed  Google Scholar 

  6. Long, S.W., Olsen, R.J., Eagar, T.N., Beres, S.B., Zhao, P., Davis, J.J., et al., Population genomic analysis of 1,777 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: Unexpected abundance of clonal group 307, MBio, 2017, vol. 8, no. 3. https://doi.org/10.1128/mBio.00489-17

  7. Zhang, Y., Yao, Z., Zhan, S., Yang, Z., Wei, D., Zhang, J., Li, J., and Kyaw, M.H., Disease burden of intensive care unit-acquired pneumonia in China: A systematic review and meta-analysis, Int. J. Infect. Dis., 2014, vol. 29, pp. 84–90. https://doi.org/10.1016/j.ijid.2014.05.030

    Article  PubMed  Google Scholar 

  8. Zhang, Y., Wang, Q., Yin, Y., Chen, H., Jin, L., Gu, B., Xie, L., Yang, C., Ma, X., Li, H., et al., Epidemiology of carbapenem-resistant Enterobacteriaceae infections: Report from the China CRE network, Antimicrob. Agents Chemother., 2018, vol. 382, no. 19, pp. 1787–1799. https://doi.org/10.1056/NEJMoa2001282

    Article  Google Scholar 

  9. Aminina, N.M., Polovinkina, E.S., and Yakush, E.V., Probiotic products based on “Laminal”—Seaweed biogel, Dairy Ind., 2006, no. 5, pp. 70–72.

  10. Jiao, C.J., Jiang, J.L., Ke, L.M., Cheng, W., Li, F.M., Li, Z.X., and Wang, C.-Y., Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms, Food Chem. Toxicol., 2011, vol. 49, no. 3, pp. 543–549. https://doi.org/10.1016/j.fct.2010.04.050

    Article  CAS  PubMed  Google Scholar 

  11. Yurinova, G.V., Selivanova, D.S., Pristavka, A.A., Sukhov, B.G., Pogodaeva, N.N., Kuznetsov, S.V., et al., The possibility of using vegetable polysaccharide arabinogalactan for cultivation of bifidobacteria, Izv. VUZov, Prikl. Khim. Biotekhnol., 2014, no. 4, pp. 90–93.

  12. Carlucci, M.J., Scolaro, L.A., Errea, M.I., Matulewicz, M.C., and Damonte, E.B., Antiviral activity of natural sulphated galactans on herpes virus multiplicationin cell culture, Planta Med., 1997, vol. 63, no. 5, pp. 429–432. https://doi.org/10.1055/s-2006-957727

    Article  CAS  PubMed  Google Scholar 

  13. Ermak, I.M., Byankina (Barabanova), A.O., and Sokolova, E.V., Structural features and biological activity of carrageenans—Sulfated polysaccharides of red algae of the Far Eastern seas of Russia, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2014, no. 1, pp. 80–92.

  14. Babkin, V.A., Ostroukhova, L.A., and Malkov, Yu.A., Biologically active substances of larch wood, Khim. Interesakh Ustoich. Razvit., 2001, vol. 9, no. 3, pp. 363–367.

    Google Scholar 

  15. Haraguchi, H., Tanimoto, K., Tamura, Y., Mizutani, K., and Kinoshita, T., Mode of antibacterial action of retrochalcones from Glycyrrhiza inflate, Phytochemistry, 1998, vol. 48, pp. 125–129. https://doi.org/10.1016/s0031-9422(97)01105-9

    Article  CAS  PubMed  Google Scholar 

  16. Hemaiswarya, S., Kruthiventi, A.K., and Doble, M., Synergism between natural products and antibiotics against infectious diseases, Phytomedicine, 2008, vol. 15, pp. 639–652. https://doi.org/10.1016/j.phymed.2008.06.008

    Article  CAS  PubMed  Google Scholar 

  17. Lesnichaya, M.V., Aleksandrova, G.P., Feoktisto-va, L.P., et al., Silver-containing nanocomposites based on galactomannan and carrageenan: Synthesis, structure, antimicrobial properties, Russ. Chem. Bull., 2010, vol. 59, no. 12, pp. 2323–2328.

  18. Sukhov, B.G., Pogodaeva, N.N., Kuznetsov, S.V., et al., Prebiotic effect of native noncovalent arabinogalactan—Flavonoid conjugates on bifidobacteria, Russ. Chem. Bull., 2014, vol. 63, no. 9, pp. 2189–2194. https://doi.org/10.1007/s11172-014-0718-0

    Article  CAS  Google Scholar 

  19. Das, A., Baidya, R., Chakraborty, T., et al., Pharmacological basis and new insights of taxifolin: A comprehensive review, Biomed. Pharmacother., 2021, vol. 142, p. 112004. https://doi.org/10.1016/j.biopha.2021.112004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, grant no. 22-25-00449, https://rscf.ru/project/22-25-00449/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilia A. Stepanenko.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanenko, L.A., Rakova, E.B., Sukhov, B.G. et al. Effect of Natural Polysaccharides on the Population Density of Klebsiella pneumoniae Isolates In Vitro. Biochem. Moscow Suppl. Ser. B 17, 67–73 (2023). https://doi.org/10.1134/S1990750823600310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750823600310

Keywords: 

Navigation