Skip to main content
Log in

Combined Effect of PGPB Strains Pseudomonas Plecoglossicida 2,4-D and Humic Substances on the Growth and Content of Photosynthetic Pigments and Phytohormones in Wheat Plants in Drought Conditions

  • EXPERIMENTAL ARTICLES
  • Plant Growth Regulators
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

The aim of the study was to study the effect of bacteria that stimulate plant growth and humic substances on the content of chlorophyll, nitrogen balance index, cytokinin concentration, and abscisic acid in wheat plants grown in drought conditions. The accumulation of the raw mass of wheat plants during treatment with a strain of Pseudomonas plecoglossicida 2,4-D bacteria and humic substances with a deficiency of soil moisture is shown. Stimulation of plant growth is associated with the activation of root growth, which led to an increase in the nitrogen balance index and chlorophyll concentration in the treated plants. The detected increase in the concentration of chlorophyll in plants treated with P. plecoglossicida 2,4-D correlated with a decrease in the content of abscisic acid in shoots, and that in plants treated with humates correlated with an increase in cytokinins in shoots. A higher efficiency of plant treatment with a combination of bacteria and humic substances than any of them individually may be associated with the additive effect of these treatments on hormonal balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Ruzzi, M. and Aroca, R., Plant growth-promoting rhizobacteria act as biostimulants in horticulture, Sci. Horticulturae, 2015, vol. 196, pp. 124–134. https://doi.org/10.1016/j.scienta.2015.08.042

    Article  CAS  Google Scholar 

  2. Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., and Smith, D.L., Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture, Front. Plant Sci., 2018, vol. 9, p. 1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kudoyarova, G.G., Arkhipova, T., Korshunova, T., Bakaeva, M., Loginov, O., and Dodd, I.C., Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses, Front. Plant Sci., 2019, vol. 10, p. 1368. https://doi.org/10.3389/fpls.2019.01368

    Article  PubMed Central  PubMed  Google Scholar 

  4. Richardson, A.E., Barea, J., Mcneill, A.M., and Prigent-Combaret, C., Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms, Plant Soil, 2009, vol. 321, nos. 1–2, pp. 305–339. https://doi.org/10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  5. Kudoyarova, G.R., Vysotskaya, L.B., Arkhipova, T.N., Kuzmina, L.Yu., Galimsyanova, N.F., Sidorova, L.V., Gabbasova, I.M., Melentiev, A.I., and Veselov, S.Yu., Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants, Acta Physiologiae Plant., 2017, vol. 39, no. 11, p. 253. https://doi.org/10.1007/s11738-017-2556-9

    Article  CAS  Google Scholar 

  6. Meena, V.S., Maurya, B.R., and Verma, J.P., Does a rhizospheric microorganism enhance K+ availability in agricultural soils?, Microbiol.l Res., 2014, vol. 169, nos. 5–6, pp. 337–347. https://doi.org/10.1016/j.micres.2013.09.003

    Article  CAS  Google Scholar 

  7. Islam, Md.R., Sultana, T., Joe, M.M., Yim, W., Cho, J., and Sa, T., Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper, J. Basic Microbiol., 2013, vol. 53, no. 12, pp. 1004–1015. https://doi.org/10.1002/jobm.201200141

    Article  CAS  PubMed  Google Scholar 

  8. Asari, S., Tarkowská, D., Rolčík, J., Novák, O., Palmero, D.V., Bejai, S., and Meijer, J., Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant, Planta, 2017, vol. 245, no. 1, pp. 15–30. https://doi.org/10.1007/s00425-016-2580-9

    Article  CAS  PubMed  Google Scholar 

  9. Bakhshandeh, E., Gholamhosseini, M., Yaghoubian, Ya., and Pirdashti, H., Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress, Plant Growth Regul., 2020, vol. 90, no. 1, pp. 123–136. https://doi.org/10.1007/s10725-019-00556-5

    Article  CAS  Google Scholar 

  10. Czarnes, S., Mercier, P.-E., Lemoine, D.G., Hamzaoui, J., and Legendre, L., Impact of soil water content on maize responses to the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1, J. Agronomy Crop Sci., 2020, vol. 206, no. 5, pp. 505–516. https://doi.org/10.1111/jac.12399

    Article  Google Scholar 

  11. Mukhtar, T., Rehman, S.U., Smith, D., Sultan, T., Seleiman, M.F., Alsadon, A.A., Amna, A., Ali, S., Chaudhary, H.J., Solieman, T.H.I., Ibrahim, A.A., and Saad, M.A.O., Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: Effects on biochemical profiling, Sustainability, 2020, vol. 12, no. 6, p. 2159. https://doi.org/10.3390/su12062159

    Article  CAS  Google Scholar 

  12. El-Sayed, S.Y.S. and Hagab, R.H., Effect of organic acids and plant growth promoting rhizobacteria (PGPR) on biochemical content and productivity of wheat under saline soil conditions, Middle East J. Agric. Res., 2020, vol. 9, pp. 227–242. https://doi.org/10.36632/mejar/2020.9.2.2

    Article  Google Scholar 

  13. Shen, J., Guo, M.-J., Wang, Yu-G., Yuan, X.-Ya., Wen, Yi.-Yu., Song, N.-E., Dong, Sh.-Q., and Guo, P.-Yi., Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress, Plant Signaling Behav., 2020, vol. 15, no. 8, p. 1774212. https://doi.org/10.1080/15592324.2020.1774212

  14. Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei, P., and Piccolo, A., Humic and fulvic acids as biostimulants in horticulture, Sci. Horticulturae, 2015, vol. 196, pp. 15–27. https://doi.org/10.1016/j.scienta.2015.09.013

    Article  CAS  Google Scholar 

  15. Olaetxea, M., De Hita, D., Garcia, C.A., Fuentes, M., Baigorri, R., Mora, V., Garnica, M., Urrutia, O., Erro, J., Zamarreño, A.M., Berbara, R.L., and Garcia-Mina, J.M., Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot-growth, Appl. Soil Ecol., 2017, vol. 123, pp. 521–537. https://doi.org/10.1016/j.apsoil.2017.06.007

    Article  Google Scholar 

  16. Nazarov, A.M., Garankov, I.N., Tuktarova, I.O., Salmanova, E.R., Arkhipova, T.N., Ivanov, I.I., Feoktistova, A.V., Prostyakova, Z.G., and Kudoyarova, G.R., Hormone balance and shoot growth in wheat (Triticum durum Desf.) plants as influenced by sodium humates of the granulated organic fertilizer, Agric. Biol., 2020, vol. 55, no. 5, pp. 945–955. https://doi.org/10.15389/agrobiology.2020.5.945eng

    Article  Google Scholar 

  17. Ullah, A., Ali, M., Shahzad, K., Ahmad, F., Iqbal, S., Rahman, M.H.U., Ahmad, S., Iqbal, M.M., Danish, S., Fahad, S., Alkahtani, J., Soliman Elshikh, M., and Datta, R., Impact of seed dressing and soil application of potassium humate on cotton plants productivity and fiber quality, Plants, 2020, vol. 9, no. 11, p. 1444. https://doi.org/10.3390/plants9111444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Olaetxea, M., Mora, V., Bacaicoa, E., Baigorri, R., Garnica, M., Fuentes, M., Casanova, E., Zamarreño, A.M., Iriarte, J.C., Etayo, D., Ederra, I., Gonzalo, R., and Garcia-Mina, J.M., ABA-regulation of root hydraulic conductivity and aquaporin gene- expression is crucial to the plant shoot rise caused by rhizosphere humic acids, Plant Physiol., 2015, p. pp.00596.2015. https://doi.org/10.1104/pp.15.00596

  19. Tikhonov, V.V., Yakushev, A.V., Zavgorodnyaya, Yu.A., Byzov, B.A., and Demin, V.V., Effects of humic acids on the growth of bacteria, Eurasian Soil Sci., 2010, vol. 43, no. 3, pp. 305–313. https://doi.org/10.1134/s1064229310030087

    Article  ADS  Google Scholar 

  20. Verbon, E.H. and Liberman, L.M., Beneficial microbes affect endogenous mechanisms controlling root development, Trends Plant Sci., 2016, vol. 21, no. 3, pp. 218–229. https://doi.org/10.1016/j.tplants.2016.01.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cueva-Yesquén, L.G., Goulart, M.C., Attili De Angelis, D., Nopper Alves, M., and Fantinatti-Garboggini, F., Multiple plant growth-promotion traits in endophytic bacteria retrieved in the vegetative stage from passionflower, Front. Plant Sci., 2021, vol. 11. https://doi.org/10.3389/fpls.2020.621740

  22. Feoktistova, A., Bakaeva, M., Timergalin, M., Chetverikova, D., Kendjieva, A., Rameev, T., Hkudaygulov, G., Nazarov, A., Kudoyarova, G., and Chetverikov, S., Effects of humic substances on the growth of pseudomonas plecoglossicida 2,4-D and wheat plants inoculated with this strain, Microorganisms, 2022, vol. 10, no. 5, p. 1066. https://doi.org/10.3390/microorganisms10051066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hai, N.N., Chuong, N.N., Tu, N.H.C., Kisiala, A., Hoang, X.L.T., and Thao, N.P., Role and regulation of cytokinins in plant response to drought stress, Plants, 2020, vol. 9, no. 4, p. 422. https://doi.org/10.3390/plants9040422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Aslam, M., Waseem, M., Jakada, B.H., Okal, E.J., Lei, Z., Saqib, H.S.A., Yuan, W., Xu, W., and Zhang, Q., Mechanisms of abscisic acid-mediated drought stress responses in plants, Int. J. Mol. Sci., 2022, vol. 23, p. 1084. https://doi.org/10.3390/10.3390/ijms23031084

    Article  Google Scholar 

  25. Chetverikov, S.P., Sharipov, D.A., Korshunova, T.Y., and Loginov, O.N., Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2,4-D, Appl. Biochem. Microbiol., 2017, vol. 53, pp. 533–538. https://doi.org/10.1134/S0003683817050027

    Article  CAS  Google Scholar 

  26. Bakaeva, M., Kuzina, E., Vysotskaya, L., Kudoyarova, G., Arkhipova, T., Rafikova, G., Chetverikov, S., Korshunova, T., Chetverikova, D., and Loginov, O., Capacity of Pseudomonas strains to degrade hydrocarbons, produce auxins and maintain plant growth under normal conditions and in the presence of petroleum contaminants, Plants, 2020, vol. 9, p. 379. https://doi.org/10.3390/plants9030379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Vysotskaya, L.B., Korobova, A.V., Veselov, S.Y., Dodd, I.C., and Kudoyarova, G.R., ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient deprived durum wheat, Funct. Plant Biol., 2009, vol. 36, pp. 66–72. https://doi.org/10.1071/FP08187

    Article  CAS  PubMed  Google Scholar 

  28. Kudoyarova, G.R., Melentiev, A.I., Martynenko, E.V., Arkhipova, T.N., Shendel, G.V., Kuzmina, L.Y., Dodd, I.C., and Veselov, S.Yu., Cytokinin producing bacteria stimulate amino acid deposition by wheat roots, Plant Physiol. Biochem., 2014, vol. 83, pp. 285–291. https://doi.org/10.1016/j.plaphy.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  29. Nacry, P., Canivenc, G., Muller, B., Azmi, A., Onckelen, H.V., Rossignol, M., and Doumas, P., A role for auxin redistribution in the response of the root system architecture to phosphate starvation in Arabidopsis, Plant Physiol., 2005, vol. 138, pp. 2061–2074. https://doi.org/10.1104/pp.105.060061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yang, J., Worley, E., and Udvardi, M., A NAP-AAO3 regulatory module promotes chlorophyll degradation via aba biosynthesis in Arabidopsis leaves, Plant Cell, 2014, vol. 26, pp. 4862–4874. https://doi.org/10.1105/tpc.114.133769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Belimov, A.A., Dodd, I.C., Safronova, V.I., Dumova, V.A., Shaposhnikov, A.I., Ladatko, A.G., and Davies, W.J., Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth, Plant Physiol. Biochem., 2014, vol. 74, pp. 84–91. https://doi.org/10.1016/j.plaphy.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  32. Pizzeghello, D., Francioso, O., Ertani, A., Muscolo, A., and Nardi, S., Isopentenyladenosine and cytokinin-like activity of different humic substances, J. Geochem. Explor., 2013, vol. 129, pp. 70–75.

    Article  CAS  Google Scholar 

  33. Hönig, M., Plíhalova, L., Husičkova, A., Nisler, J., and Doležal, K., Role of cytokinins in senescence, antioxidant defence and photosynthesis, Int. J. Mol. Sci., 2018, vol. 19, p. 4045. https://doi.org/10.3390/ijms19124045

    Article  PubMed Central  PubMed  Google Scholar 

  34. Korobova, A.V., Akhiyarova, G.R., Veselov, S.Y., Ku-doyarova, G.R., Fedyaev, V.V., and Farkhutdinov, R.G., Participation of nitrate sensor NRT1.1 in the control of cytokinin level and root elongation under normal conditions and nitrogen deficit, Mosc. Univ. Biol. Sci. Bull., 2019, vol. 74, pp. 221–226. https://doi.org/10.3103/S0096392519040072

    Article  Google Scholar 

  35. Werner, T., Nehnevajova, E., Köllmer, I., Novak, O., Strnad, M., Krämer, U., and Schmülling, T., Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and Tobacco, Plant Cell, 2010, vol. 22, pp. 3905–3920. https://doi.org/10.1105/tpc.109.072694

    Article  PubMed Central  PubMed  Google Scholar 

  36. Liu, S., Strauss, S., Adibi, M., Mosca, G., Yoshida, S., Ioio, R.D., Runions, A., Andersen, T.G., Grossmann, G., Huijser, P., Smith, R.S., and Tsiantis, M., Cytokinin promotes growth cessation in the Arabidopsis root, Curr. Biol., 2022, vol. 32, pp. 1974–1985. https://doi.org/10.1016/j.cub.2022.03.019

    Article  CAS  PubMed  Google Scholar 

  37. Jones, B.J. and Ljung, K., Auxin and cytokinin regulate each other’s levels via a metabolic feedback loop, Plant Signal. Behav., 2011, vol. 6, pp. 901–904. https://doi.org/10.4161/psb.6.6.15323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation, grant number 22-26-00147, https://rscf.ru/en/project/22-26-00147/ accessed on 10 January 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Feoktistova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feoktistova, A.V., Timergalin, M.D., Rameev, T.V. et al. Combined Effect of PGPB Strains Pseudomonas Plecoglossicida 2,4-D and Humic Substances on the Growth and Content of Photosynthetic Pigments and Phytohormones in Wheat Plants in Drought Conditions. Russ. Agricult. Sci. 49 (Suppl 1), S81–S88 (2023). https://doi.org/10.3103/S1068367423070297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367423070297

Keywords:

Navigation