Skip to main content
Log in

Convolution Kernel Determination Problem in the Third Order Moore–Gibson–Thompson Equation

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

This article is concerned with the study of the inverse problem of determining the difference kernel in a Volterra type integral term function in the third-order Moore–Gibson–Thompson (MGT) equation. First, the initial-boundary value problem is reduced to an equivalent problem. Using the Fourier spectral method, the equivalent problem is reduced to a system of integral equations. The existence and uniqueness of the solution to the integral equations are proved. The obtained solution to the integral equations of Volterra-type is also the unique solution to the equivalent problem. Based on the equivalence of the problems, the theorem of the existence and uniqueness of the classical solutions of the original inverse problem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. B. Kaltenbacher, I. Lasiecka, and M. K. Pospieszalska, “Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound,” Control Cybern. 40, 971–988 (2011).

    MathSciNet  Google Scholar 

  2. I. Lasiecka and X. Wang, “Moore–Gibson–Thompson equation with memory, part I: Exponential decay of energy,” Z. Angew. Mathematik und Phys. 67 (2), 2–17 (2016). https://doi.org/10.1007/s00033-015-0597-8

    Article  MathSciNet  CAS  Google Scholar 

  3. W. Al-Khulaifi and A. Boumenir, “Reconstructing the Moore–Gibson–Thompson equation,” Nonautonomous Dyn. Syst. 7, 219–223 (2020). https://doi.org/10.1515/msds-2020-0117

    Article  MathSciNet  Google Scholar 

  4. I. Lasiecka and X. Wang, “Moore–Gibson–Thompson equation with memory, part II: General decay of energy,” J. Differ. Equations 259, 7610–7635 (2015). https://doi.org/10.1016/j.jde.2015.08.052

    Article  MathSciNet  ADS  Google Scholar 

  5. I. Lasiecka, “Global solvability of Moore–Gibson–Thompson equation with memory arising in nonlinear acoustics,” J. Evol. Equations 17, 411–441 (2017). https://doi.org/10.1007/s00028-016-0353-3

    Article  MathSciNet  Google Scholar 

  6. V. G. Romanov, “Inverse problems for equations with a memory,” Eurasian J. Math. Comput. Appl. 2 (1), 51–80 (2014). https://doi.org/10.32523/2306-3172-2014-2-4-51-80

    Article  Google Scholar 

  7. D. K. Durdiev and Zh. Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain,” Math. Notes 97, 867–877 (2015). https://doi.org/10.1134/s0001434615050223

    Article  MathSciNet  Google Scholar 

  8. D. K. Durdiev and Z. D. Totieva, “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type,” J. Inverse Ill-posed Probl. 28, 43–52 (2019). https://doi.org/10.1515/jiip-2018-0024

    Article  MathSciNet  Google Scholar 

  9. D. K. Durdiev and Zh. Zh. Zhumaev, “Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor,” Math. Methods Appl. Sci. 45, 8374–8388 (2022). https://doi.org/10.1002/mma.7133

    Article  MathSciNet  ADS  Google Scholar 

  10. U. Durdiev and Zh. Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation,” Math. Methods Appl. Sci. 42, 7440–7451 (2019). https://doi.org/10.1002/mma.5863

    Article  MathSciNet  ADS  Google Scholar 

  11. D. K. Durdiev and A. A. Rahmonov, “Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability,” Theor. Math. Phys. 195, 923–937 (2018). https://doi.org/10.1134/s0040577918060090

    Article  Google Scholar 

  12. D. K. Durdiev and A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity,” Math. Methods Appl. Sci. 43, 8776–8796 (2020). https://doi.org/10.1002/mma.6544

    Article  MathSciNet  ADS  Google Scholar 

  13. A. L. Bukhgeim and G. V. Dyatlov, “Uniqueness in one inverse problem of memory reconstruction,” Sib. Math. J. 37, 454–460 (1996). https://doi.org/10.1007/bf02104847

    Article  Google Scholar 

  14. J. Janno and L. V. Wolfersdorf, “Inverse problems for identification of memory kernels in heat flow,” J. Inverse Ill-Posed Probl. 4, 39–66 (1996). https://doi.org/10.1515/jiip.1996.4.1.39

    Article  MathSciNet  Google Scholar 

  15. E. Pais and J. Janno, “Inverse problem to determine degenerate memory kernels in heat flux with third kind boundary conditions,” Math. Modell. Anal. 11, 427–450 (2006). https://doi.org/10.3846/13926292.2006.9637329

    Article  MathSciNet  Google Scholar 

  16. F. Colombo, “An inverse problem for a parabolic integrodifferential model in the theory of combustion,” Phys. D: Nonlinear Phenom. 236, 81–89 (2007). https://doi.org/10.1016/j.physd.2007.07.012

    Article  MathSciNet  CAS  ADS  Google Scholar 

  17. D. Guidetti, “Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term,” Discrete Contin. Dyn. Syst. S 8, 749–756 (2015). https://doi.org/10.3934/dcdss.2015.8.749

  18. A. N. Bondarenko, T. V. Bugueva, and D. S. Ivashchenko, “The method of integral transformations in inverse problems of anomalous diffusion,” Russ. Math. 61 (3), 1–11 (2017). https://doi.org/10.3103/s1066369x1703001x

    Article  MathSciNet  Google Scholar 

  19. D. K. Durdiev and Kh. Kh. Turdiev, “Inverse problem for a first-order hyperbolic system with memory,” Differ. Equations 56, 1634–1643 (2020). https://doi.org/10.1134/s00122661200120125

    Article  MathSciNet  Google Scholar 

  20. D. K. Durdiev and Kh. Kh. Turdiev, “The problem of finding the kernels in the system of integro-differential Maxwell’s equations,” J. Appl. Ind. Math. 15, 190–211 (2021). https://doi.org/10.1134/s1990478921020022

    Article  MathSciNet  Google Scholar 

  21. A. A. Boltaev and D. K. Durdiev, “Inverse problem for viscoelastic system in a vertically layered medium,” Vladikavkazskii Matematicheskii Zh. 24 (4), 30–47 (2022). https://doi.org/10.46698/i8323-0212-4407-h

    Article  MathSciNet  Google Scholar 

  22. S. Liu and R. Triggiani, “An inverse problem for a third order PDE arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement,” J. Inverse Ill-Posed Probl. 21, 825–869 (2013). https://doi.org/10.1515/jip-2012-0096

    Article  MathSciNet  Google Scholar 

  23. R. Arancibia, R. Lecaros, A. Mercado, and S. Zamorano, “An inverse problem for Moore–Gibson–Thompson equation arising in high intensity ultrasound,” J. Inverse Ill-posed Probl. 30, 659–675 (2022). https://doi.org/10.1515/jiip-2020-0090

    Article  MathSciNet  Google Scholar 

  24. Y. T. Mehraliyev, “On solvability of an inverse boundary value problem for a second order elliptic equation,” Vestn. Tverskogo Gos. Univ., Ser. Prikl. Mat. 23, 25–38 (2011).

    Google Scholar 

  25. Ya. T. Mehraliyev, “On an inverse boundary value problem for the second order elliptic equation with additional integral condition,” Vladikavkazskii Matematicheskii Zh. 15 (4), 30–43 (2013).

    MathSciNet  Google Scholar 

  26. K. I. Khudaverdiyev and A. A. Veliyev, Investigation of a One-Dimensional Mixed Problem for a Class of Pseudohyperbolic Equations of Third Order with Non-Linear Operator Right Hand Side (Chashyoghly, Baku, 2010).

    Google Scholar 

Download references

Funding

The work of A.A. Boltaev was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-02-2023-914.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. K. Durdiev, A. A. Boltaev or A. A. Rahmonov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durdiev, D.K., Boltaev, A.A. & Rahmonov, A.A. Convolution Kernel Determination Problem in the Third Order Moore–Gibson–Thompson Equation. Russ Math. 67, 1–13 (2023). https://doi.org/10.3103/S1066369X23120034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23120034

Keywords:

Navigation