Skip to main content
Log in

Control of axial position of terajet generated in reflection mode

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A theoretical study was performed on control of axial position of a terajet (TJ) by polarization state of incident plane wave. The TJ is generated in a reflection mode realized by putting a cuboid scatterer onto a reflection screen. The study shows that the polarization affects mainly transversal electric field profile of TJ as the scattering system has a higher symmetric structure, while affects more the focal length (FL) of TJ as the system has a lower symmetric structure. Further study focuses on the polarization effect of the FL of the TJ generated by a scattering system with a lower symmetry, and asymmetries caused by geometries of scatterer and reflection screen and their relative position are considered. The results show that the effect is closely related to the asymmetric extent of scatterer system and both have a non-monotonic relationship. The polarization can induce FL change by nine times. The effect caused by geometric asymmetry of scatterer or reflection screen is stronger than that by the asymmetry of their relative position. The introduction of reflection screen increases complexity of interference of scattered waves and hence results in some interesting features of FL polarization effect, such as non-monotonic asymmetry dependence, absence of the effect for some specific asymmetrical structures and threshold polarization angle effect on characteristic parameters of TJ. It is included that the FL of the TJ generated by an asymmetric scatterer structure in reflection mode can be effectively controlled by polarization state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Z.G. Chen, A. Taflove, V. Backman, Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 12(7), 1214–1220 (2004)

    Article  ADS  Google Scholar 

  2. V. Pacheco-Peña, M. Beruete, I.V. Minin, O.V. Minin, Terajets produced by dielectric cuboids. Appl. Phys. Lett. DOI 10(1063/1), 4894243 (2014)

    Google Scholar 

  3. I.V. Minin, O.V. Minin, V. Pacheco-Pena, M. Beruete, Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode. Opt. Lett. 40(10), 2329–2332 (2015)

    Article  ADS  Google Scholar 

  4. L.Y. Yue, B. Yan, J.N. Monks, R. Dhama, Z.B. Wang, Minin, O.V. Minin, I.V. Minin, Photonic Jet by a near-unity-refractive-index sphere on a dielectric substrate with high index contrast. Ann. Phys 530(6), 1800032 (2018)

    Article  Google Scholar 

  5. I.V. Minin, Y.E. Geints, A.A. Zemlyanov, O.V. Minin, Specular-reflection photonic nanojet: physical basis and optical trapping application. Opt. Express 28(15), 22690–22704 (2020)

    Article  ADS  Google Scholar 

  6. I.V. Minin, C.Y. Liu, Y.C. Yang, K. Staliunas, O.V. Minin, Experimental observation of flat focusing mirror based on photonic jet effect. Sci. Rep. 10(1), 8459 (2020)

    Article  ADS  Google Scholar 

  7. I.V. Minin, O.V. Minin, Comment on Functional dielectric microstructure for photonic nanojet generation in reflection mode by Aleksandr Sergeev and Ksenia Sergeeva. Opt. Mater. 112, 110770 (2021)

    Article  Google Scholar 

  8. I.V. Minin, O.V. Minin, L. Yue, Electromagnetic properties of pyramids from positions of photonics. Russ. Phys. J 62, 1763–1769 (2020)

    Article  Google Scholar 

  9. Y.E. Geints, A.A. Zemlyanov, I.V. Minin, O.V. Minin, Overcoming refractive index limit of mesoscale light focusing by means of specular-reflection photonic nanojet. Opt. Lett. 45(14), 3885–3888 (2020)

    Article  ADS  Google Scholar 

  10. I.V. Minin, O.V. Minin, Y.E. Geints, Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: brief review. Ann. Phys-berlin 527(7–8), 491–497 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y.J. Yang, D.L. Zhang, P.R. Hua, High-resolution perfect imaging of micro/nanojet. Results Phys. 38, 105616 (2022)

    Article  Google Scholar 

  12. Y.C. Li, H.B. Xin, H.X. Lei, L.L. Liu, Y.Z. Li, Y. Zhang, B.J. Li, Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci. App. 5(1), 9 (2016)

    Google Scholar 

  13. G.Q. Gu, J. Song, M. Chen, X. Peng, H.D. Liang, J.L. Qu, Single nanoparticle detection using a photonic nanojet. Nanoscale 10(29), 14182–14189 (2018)

    Article  Google Scholar 

  14. Y.E. Geints, O.V. Minin, L.Y. Yue, I.V. Minin, Wavelength-scale photonic space switch proof-of-concept based on photonic hook effect. Ann. Phys. 533, 2100192 (2021)

    Article  Google Scholar 

  15. L.Y. Yue, Z.B. Wang, B. Yan, Y. Xie, Y.E. Geints, O.V. Minin, I.V. Minin, Near-field light-bending photonic switch: physics of switching based on three-dimensional poynting vector analysis. Photon. 9(3), 154 (2021)

    Article  Google Scholar 

  16. O. Shramkova, V. Drazic, B. Varghese, L. Blondé, V. Allié, Optical efficiency enhancement of nanojet-based dielectric double-material color splitters for image sensor applications. Nanomaterials-Basel 11(11), 3036 (2021)

    Article  Google Scholar 

  17. W.D. Yan, W. Liu, C.L. Jiang, Z. Huang, K.C. Xu, T.J. Dong, X.Y. Cui, D.F. Yang, Micro Fabry-Perot interferometer based on a microsphere lens for motor rotation speed measurement. Opt. Fiber Technol. 70, 102891 (2022)

    Article  Google Scholar 

  18. S. Kwon, J. Park, K. Kim, Y. Cho, M. Lee, Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices. Light Sci. Appl. 11, 32 (2022)

    Article  ADS  Google Scholar 

  19. K.A. Sergeeva, A.A. Sergeev, O.V. Minin, I.V. Minin, A closer look at photonic nanojets in reflection mode: control of standing wave modulation. Photon. 8(2), 54 (2021)

    Article  Google Scholar 

  20. W.N. Zhang, H.X. Lei, Fluorescence enhancement based on cooperative effects of a photonic nanojet and plasmon resonance. Nanoscale 12(12), 6596–6602 (2020)

    Article  Google Scholar 

  21. Y.Y. Cai, S.S. Collins, M.J. Gallagher, U. Bhattacharjee, R. Zhang, T.H. Chow, A. Ahmadivand, B. Ostovar, A. Al-Zubeidi, J.F. Wang, P. Nordlander, C.F. Landers, S. Link, Single-particle emission spectroscopy resolves d-hole relaxation in copper nanocubes. ACS Energy Lett. 4(10), 2458–2465 (2019)

    Article  Google Scholar 

  22. V. Pacheco-Pena, M. Beruete, I.V. Minin, O.V. Minin, Multifrequency focusing and wide angular scanning of terajets. Opt. Lett. 40(2), 245–248 (2015)

    Article  ADS  Google Scholar 

  23. L. Zhu, A.D. Wang, J. Wang, Free-space data-carrying bendable light communications. Sci. Rep. 9, 14969 (2019)

    Article  ADS  Google Scholar 

  24. I.V. Minin, O.V. Minin, C.Y. Liu, H.D. Wei, Y.E. Geints, A. Karabchevsky, Experimental demonstration of a tunable photonic hook by a partially illuminated dielectric microcylinder. Opt. Lett. 45(17), 4899–902 (2020)

    Article  ADS  Google Scholar 

  25. C.Y. Liu, W.Y. Chen, Y.E. Geints, O.V. Minin, I.V. Minin, Simulation and experimental observations of axial position control of a photonic nanojet by a dielectric cube with a metal screen. Opt. Lett. 46(17), 4292–4295 (2021)

    Article  ADS  Google Scholar 

  26. C.B. Lin, Y.T. Lee, C.Y. Liu, Optimal photonic nanojet beam shaping by mesoscale dielectric dome lens. J. Appl. Phys. 127(24), 243110 (2020)

    Article  ADS  Google Scholar 

  27. H.Y. Zhu, Z.C. Chen, T.C. Chong, M.H. Hong, Photonic jet with ultralong working distance by hemispheric shell. Opt. Express 23(5), 6626–6633 (2015)

    Article  ADS  Google Scholar 

  28. J.M. Yang, P. Twardowski, P. Gerard, Y. Duo, J. Fontaine, S. Lecler, Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder. Opt. Express 26(4), 3723–3731 (2018)

    Article  ADS  Google Scholar 

  29. Z. Zhen, Y. Huang, Y. Feng, Y. Shen, Z. Li, An ultranarrow photonic nanojet formed by an engineered two-layer microcylinder of high refractive-index materials. Opt. Express 27(6), 9178–9188 (2019)

    Article  ADS  Google Scholar 

  30. C. Winnewisser, F. Lewen, H. Helm, Transmission characteristics of FSS filters measured by THz time-domain spectroscopy. Appl. Phys. A: Mater. Sci. Process. 66(6), 593–598 (1998)

    Article  ADS  Google Scholar 

  31. I.V. Minin, O.V. Minin, I.S. Nefedov, Photonic jets from Babinet’s cuboid structures in the reflection mode. Opt. Lett. 41(4), 785–787 (2016)

    Article  ADS  Google Scholar 

  32. Y.J. Yang, P.R. Hua, D.L. Zhang, Generation of multiple photonic hooks in reflection mode. Opt. Mater. 134, 113127 (2022)

    Article  Google Scholar 

  33. Y.J. Yang, P.R. Hua, D.L. Zhang, Ultra-narrow and ultra-strong nanojet for nanopatterning and nanolithography. Optik 255, 168726 (2022)

    Article  ADS  Google Scholar 

  34. A. Boriskin, V. Drazic, R. Keating, M. Damghanian, O. Shramkova, L. Blondé, Near field focusing by edge diffraction. Opt. Lett. 43(16), 4053–4056 (2018)

    Article  ADS  Google Scholar 

  35. I.V. Minin, C.Y. Liu, Y.E. Geints, O.V. Minin, Recent advances in integrated photonic jet-based photonics. Photon. 7(2), 41 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Project no. 61875148, and by Key Awards Program of Cultivating Outstanding Innovative Postgraduates in Arts and Sciences of Tianjin University, under Project no. C1-2022-002.

Author information

Authors and Affiliations

Authors

Contributions

YJY wrote the main manuscript text and DLZ reviewed the manuscript.

Corresponding author

Correspondence to De-Long Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YJ., Zhang, DL. Control of axial position of terajet generated in reflection mode. Appl. Phys. B 130, 48 (2024). https://doi.org/10.1007/s00340-024-08182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08182-4

Navigation