Skip to main content
Log in

Comprehensive Analysis of Computational Methods for Predicting Anti-inflammatory Peptides

  • Review Article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Inflammation is a biological resistant response to harmful stimuli, such as infection, damaged cells, toxic chemicals, or tissue injuries. Inflammation eradicates pathogenic microorganisms or irritants and facilitates tissue repair. Prolonged inflammation can result in chronic inflammatory diseases. In the last decade, peptide therapeutics have gained significant attention due to their high specificity in targeting affected cells without affecting healthy cells. Motivated by the significance of peptide-based therapies, Anti-inflammatory peptides (AIPs) related models have become increasingly popular due to their significant characteristics. The systematic experimental identifying methods for AIPs deals with various problems of the existing in-vitro methods. Hence, to develop an accurate and reliable prediction of AIPs, numerous computational models have been developed. These models demonstrate high diversity in their datasets, feature representation, feature selection, model training, and evaluation methods. In this study, we conducted an extensive survey of the existing models for discriminating AIPs and point out the differences between these approaches. We evaluate the prediction results of the models based on independent tests and AUC values. Moreover, we emphasize the challenges and prospects in this field, paving the way for developing more effective prediction models that can enhance the predictive outcomes in predicting AIPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferrero-Miliani L et al (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol 147(2):227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watson J et al (2020) Raised inflammatory markers as a predictor of one-year mortality: a cohort study in primary care in the UK using electronic health record data. BMJ Open 10(10):e036027

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tsai D-H et al (2019) Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ Sci Pollut Res 26:19697–19704

    Article  Google Scholar 

  4. Deepak P, Axelrad JE, Ananthakrishnan AN (2019) The role of the radiologist in determining disease severity in inflammatory bowel diseases. Gastrointest Endosc Clin 29(3):447–470

    Article  Google Scholar 

  5. de Barcelos IP, Troxell RM, Graves JS (2019) Mitochondrial dysfunction and multiple sclerosis. Biology 8(2):37

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zouki C, Ouellet S, Filep JG (2000) The anti-inflammatory peptides, antiflammins, regulate the expression of adhesion molecules on human leukocytes and prevent neutrophil adhesion to endothelial cells. FASEB J 14(3):572–580

    Article  CAS  PubMed  Google Scholar 

  7. Wiebe N, Stenvinkel P, Tonelli M (2019) Associations of chronic inflammation, insulin resistance, and severe obesity with mortality, myocardial infarction, cancer, and chronic pulmonary disease. JAMA Netw Open 2(8):e1910456

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu CH et al (2017) Biomarkers of chronic inflammation in disease development and prevention: challenges and opportunities. Nat Immunol 18(11):1175–1180

    Article  CAS  PubMed  Google Scholar 

  9. Pahwa R, Goyal A, Jialal I (2021) Chronic inflammation. StatPearls, Treasure Island

    Google Scholar 

  10. Weissman S et al (2020) Atherosclerotic cardiovascular disease in inflammatory bowel disease: the role of chronic inflammation. World J Gastrointest Pathophysiol 11(5):104

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang B et al (2021) Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 6(1):94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen L et al (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204

    Article  PubMed  Google Scholar 

  13. Germolec DR et al (2018) Markers of inflammation. In: Immunotoxicity testing: methods and protocols. Humana Press, New York, p 57–79

  14. Corrigan M et al (2015) Autoimmune hepatitis: an approach to disease understanding and management. Br Med Bull 114(1):181–191

    Article  CAS  PubMed  Google Scholar 

  15. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    Article  CAS  PubMed  Google Scholar 

  16. Vázquez-Prieto S et al (2016) QSPR-perturbation models for the prediction of B-epitopes from immune epitope database: a potentially valuable route for predicting “in silico” new optimal peptide sequences and/or boundary conditions for vaccine development. Int J Pept Res Ther 22:445–450

    Article  Google Scholar 

  17. Rastogi S et al (2019) Peptide-based therapeutics: quality specifications, regulatory considerations, and prospects. Drug Discov Today 24(1):148–162

    Article  MathSciNet  PubMed  Google Scholar 

  18. Craik DJ et al (2013) The future of peptide-based drugs. Chem Biol Drug Des 81(1):136–147

    Article  CAS  PubMed  Google Scholar 

  19. Liu W et al (2021) Peptide-based therapeutic cancer vaccine: current trends in clinical application. Cell Prolif 54(5):e13025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miele L et al (1988) Novel anti-inflammatory peptides from the region of highest similarity between uteroglobin and lipocortin I. Nature 335(6192):726–730

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Gonzalez-Rey E, Anderson P, Delgado M (2007) Emerging roles of vasoactive intestinal peptide: a new approach for autoimmune therapy. Ann Rheum Dis 66(Suppl 3):iii70–iii76

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Delgado M, Ganea D (2008) Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents. Brain Behav Immun 22(8):1146–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Banchereau J, Pascual V, O’Garra A (2012) From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol 13(10):925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steinman L et al (2012) Optimization of current and future therapy for autoimmune diseases. Nat Med 18(1):59–65

    Article  CAS  PubMed  Google Scholar 

  25. Odegaard JI, Chawla A (2013) Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339(6116):172–177

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patterson H et al (2014) Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin Exp Immunol 176(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hernández-Flórez D, Valor L (2016) Los inhibidores de las proteínas-cinasas en enfermedades autoinmunes e inflamatorias: presente y futuro de nuevas dianas terapéuticas. Reumatol clín 12(2):91–99

    Article  PubMed  Google Scholar 

  28. Zhao L et al (2016) Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). J Food Drug Anal 24(2):376–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339(6116):166–172

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta S et al (2017) Prediction of anti-inflammatory proteins/peptides: an in silico approach. J Transl Med 15(1):1–11

    Article  Google Scholar 

  31. Manavalan B et al (2018) AIPpred: sequence-based prediction of anti-inflammatory peptides using random forest. Front Pharmacol 9:276

    Article  PubMed  PubMed Central  Google Scholar 

  32. Khatun M, Hasan M, Kurata H (2019) PreAIP: computational prediction of anti-inflammatory peptides by integrating multiple complementary features. Front Genet 10:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J et al (2020) AIEpred: an ensemble predictive model of classifier chain to identify anti-inflammatory peptides. IEEE/ACM Trans Comput Biol Bioinform 18(5):1831–1840

    Article  Google Scholar 

  34. Wei L et al (2019) PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Bioinformatics 35(21):4272–4280

    Article  PubMed  Google Scholar 

  35. Zhao D et al (2021) iAIPs: identifying anti-inflammatory peptides using random forest. Front Genet 12:773202

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guo Y et al (2021) PreTP-EL: prediction of therapeutic peptides based on ensemble learning. Brief Bioinform 22(6):bbab358

    Article  PubMed  Google Scholar 

  37. Yan K et al (2022) PreTP-Stack: prediction of therapeutic peptide based on the stacked ensemble learning. IEEE/ACM Trans Comput Biol Bioinform 20(2):1337–1344

    Article  Google Scholar 

  38. Yan K et al (2022) TPpred-ATMV: therapeutic peptide prediction by adaptive multi-view tensor learning model. Bioinformatics 38(10):2712–2718

    Article  CAS  PubMed  Google Scholar 

  39. Deng H et al (2022) Prediction of anti-inflammatory peptides by a sequence-based stacking ensemble model named AIPStack. Iscience 25(9):104967

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gaffar S et al (2023) IF-AIP: a machine learning method for the identification of anti-inflammatory peptides using multi-feature fusion strategy. Comput Biol Med 168:107724

    Article  PubMed  Google Scholar 

  41. Kim Y et al (2012) Immune epitope database analysis resource. Nucleic Acids Res 40(W1):W525–W530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vita R et al (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43(D1):D405–D412

    Article  CAS  PubMed  Google Scholar 

  43. Huang Y, Niu B, Gao Y, Fu L, Li W (20l0) CDHTT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

  44. Nakashima H, Nishikawa K, Ooi T (1986) The folding type of a protein is relevant to the amino acid composition. J Biochem 99(1):153–162

    Article  CAS  PubMed  Google Scholar 

  45. Ali F, Hayat M (2015) Classification of membrane protein types using Voting Feature Interval in combination with Chou’s Pseudo Amino Acid Composition. J Theor Biol 384:78–83

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Ghulam A et al (2022) ACP-2DCNN: deep learning-based model for improving prediction of anticancer peptides using two-dimensional convolutional neural network. Chemom Intell Lab Syst 226:104589

    Article  CAS  Google Scholar 

  47. Ahmad A et al (2022) Identification of antioxidant proteins using a discriminative intelligent model of k-space amino acid pairs based descriptors incorporating with ensemble feature selection. Biocybern Biomed Eng 42(2):727–735

    Article  Google Scholar 

  48. Zayas JF (1997) Functionality of proteins in food. Springer, Berlin

    Book  Google Scholar 

  49. Kawashima S, Kanehisa M (2000) AAIndex: amino acid index database. Nucleic Acids Res 28(1):374–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saha I et al (2012) Fuzzy clustering of physicochemical and biochemical properties of amino acids. Amino Acids 43:583–594

    Article  CAS  PubMed  Google Scholar 

  51. Saravanan V, Gautham N (2015) Harnessing computational biology for exact linear B-cell epitope prediction: a novel amino acid composition-based feature descriptor. Omics J Integr Biol 19(10):648–658

    Article  CAS  Google Scholar 

  52. Ali F, Hayat M (2016) Machine learning approaches for discrimination of Extracellular Matrix proteins using hybrid feature space. J Theor Biol 403:30–37

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  53. Ahmad A et al (2021) Deep-AntiFP: prediction of antifungal peptides using distant multi-informative features incorporating with deep neural networks. Chemom Intell Lab Syst 208:104214

    Article  CAS  Google Scholar 

  54. Bhasin M, Raghava GP (2004) Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem 279(22):23262–23266

    Article  CAS  PubMed  Google Scholar 

  55. Sun J-N et al (2020) Prediction of cyclin protein using two-step feature selection technique. IEEE Access 8:109535–109542

    Article  Google Scholar 

  56. Liu Y, Wang X, Liu B (2019) A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief Bioinform 20(1):330–346

    Article  PubMed  Google Scholar 

  57. Ahmad A et al (2022) iAFPs-EnC-GA: identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approach. Chemom Intell Lab Syst 222:104516

    Article  CAS  Google Scholar 

  58. Banjar A et al (2022) iDBP-PBMD: a machine learning model for detection of DNA-binding proteins by extending compression techniques into evolutionary profile. Chemom Intell Lab Syst 231:104697

    Article  CAS  Google Scholar 

  59. Ali F et al (2022) Deep-PCL: a deep learning model for prediction of cancer lectins and non cancer lectins using optimized integrated features. Chemom Intell Lab Syst 221:104484

    Article  Google Scholar 

  60. Kabir M et al (2018) Improving prediction of extracellular matrix proteins using evolutionary information via a grey system model and asymmetric under-sampling technique. Chemom Intell Lab Syst 174:22–32

    Article  CAS  Google Scholar 

  61. Akbar S et al (2021) iAtbP-Hyb-EnC: prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model. Comput Biol Med 137:104778

    Article  PubMed  Google Scholar 

  62. Ali F et al (2021) AFP-CMBPred: computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information. Comput Biol Med 139:105006

    Article  CAS  PubMed  Google Scholar 

  63. Akbar S et al (2020) iHBP-DeepPSSM: identifying hormone binding proteins using PsePSSM based evolutionary features and deep learning approach. Chemom Intell Lab Syst 204:104103

    Article  CAS  Google Scholar 

  64. Akbar S et al (2022) Prediction of Antiviral peptides using transform evolutionary and SHAP analysis based descriptors by incorporation with ensemble learning strategy. Chemom Intell Lab Syst 230:104682

    Article  CAS  Google Scholar 

  65. Rangwala H, Karypis G (2005) Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics 21(23):4239–4247

    Article  CAS  PubMed  Google Scholar 

  66. Liu B, Long R, Chou K-C (2016) iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics 32(16):2411–2418

    Article  PubMed  Google Scholar 

  67. Gao X et al (2019) iRBP-motif-PSSM: identification of RNA-binding proteins based on collaborative learning. IEEE Access 7:168956–168962

    Article  MathSciNet  Google Scholar 

  68. Zhang J, Liu B (2017) PSFM-DBT: identifying DNA-binding proteins by combing position specific frequency matrix and distance-bigram transformation. Int J Mol Sci 18(9):1856

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu B et al (2012) Using amino acid physicochemical distance transformation for fast protein remote homology detection. PLoS ONE 7(9):e46633

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu B et al (2014) Using distances between Top-n-gram and residue pairs for protein remote homology detection. BMC Bioinform 15:S3

    Article  Google Scholar 

  71. Wang N, Zhang J, Liu B (2021) IDRBP-PPCT: identifying nucleic acid-binding proteins based on position-specific score matrix and position-specific frequency matrix cross transformation. IEEE/ACM Trans Comput Biol Bioinform 19(4):2284–2293

    Article  Google Scholar 

  72. Liu B et al (2008) A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis. BMC Bioinform 9:1–16

    Article  CAS  Google Scholar 

  73. Carugo O (2013) Frequency of dipeptides and antidipeptides. Comput Struct Biotechnol J 8(11):e201308001

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hasan MM, Khatun MS, Kurata H (2018) A comprehensive review of in silico analysis for protein S-sulfenylation sites. Protein Pept Lett 25(9):815–821

    Article  CAS  PubMed  Google Scholar 

  75. Hasan MM et al (2015) Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs. PLoS ONE 10(6):e0129635

    Article  PubMed  PubMed Central  Google Scholar 

  76. Xu R et al (2015) Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation. BMC Syst Biol. https://doi.org/10.1186/1752-0509-9-s1-s10

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu S et al (2022) Ensemble learning-based feature selection for phage protein prediction. Front Microbiol 13:932661

    Article  PubMed  PubMed Central  Google Scholar 

  78. Abbasi Mesrabadi H, Faez K, Pirgazi J (2023) Drug–target interaction prediction based on protein features, using wrapper feature selection. Sci Rep 13(1):3594

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frank E et al (2004) Data mining in bioinformatics using WEKA. Bioinformatics 20(15):2479–2481

    Article  CAS  PubMed  Google Scholar 

  80. Azhagusundari B, Thanamani AS (2013) Feature selection based on information gain. Int J Innov Technol Explor Eng 2(2):18–21

    Google Scholar 

  81. Huang SH (2015) Supervised feature selection: a tutorial. Artif Intell Res 4(2):22–37

    Article  Google Scholar 

  82. Ding H et al (2014) Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. Mol BioSyst 10(8):2229–2235

    Article  CAS  PubMed  Google Scholar 

  83. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on computational learning theory, 1992

  84. Ali F et al (2018) DBPPred-PDSD: machine learning approach for prediction of DNA-binding proteins using Discrete Wavelet Transform and optimized integrated features space. Chemom Intell Lab Syst 182:21–30

    Article  CAS  Google Scholar 

  85. Chou K-C, Shen H-B (2007) MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Commun 360(2):339–345

    Article  CAS  PubMed  Google Scholar 

  86. Khan ZU et al (2019) iRSpot-SPI: deep learning-based recombination spots prediction by incorporating secondary sequence information coupled with physio-chemical properties via Chou’s 5-step rule and pseudo components. Chemom Intell Lab Syst 189:169–180

    Article  CAS  Google Scholar 

  87. Schapire RE (2003) The boosting approach to machine learning: an overview. In: Nonlinear estimation and classification. Springer, New York, p 149–171

  88. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  MathSciNet  Google Scholar 

  89. Basith S et al (2018) iGHBP: computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput Struct Biotechnol J 16:412–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ali F et al (2019) DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information. J Comput Aided Mol Des 33(7):645–658

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Akbar S et al (2017) iACP-GAEnsC: evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space. Artif Intell Med 79:62–70

    Article  PubMed  Google Scholar 

  92. Liu B et al (2018) iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics 34(22):3835–3842

    Article  CAS  PubMed  Google Scholar 

  93. Akbar S et al (2019) iAFP-gap-SMOTE: an efficient feature extraction scheme gapped dipeptide composition is coupled with an oversampling technique for identification of antifreeze proteins. Lett Org Chem 16(4):294–302

    Article  CAS  Google Scholar 

  94. Akbar S et al (2023) pAtbP-EnC: identifying anti-tubercular peptides using multi-feature representation and genetic algorithm based deep ensemble model. IEEE Access 11:137099–137114

    Article  Google Scholar 

  95. Akbar S et al (2023) Identifying neuropeptides via evolutionary and sequential based multi-perspective descriptors by incorporation with ensemble classification strategy. IEEE Access 11:49024–49034

    Article  Google Scholar 

  96. Akbar S et al (2023) Prediction of amyloid proteins using embedded evolutionary and ensemble feature selection based descriptors with eXtreme gradient boosting model. IEEE Access 11:39024–39036

    Article  Google Scholar 

  97. Zhang YP, Zou Q (2020) PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning. Bioinformatics 36(13):3982–3987

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahid Akbar or Quan Zou.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Uddin, J., Akbar, S. et al. Comprehensive Analysis of Computational Methods for Predicting Anti-inflammatory Peptides. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10078-7

Navigation