Skip to main content
Log in

Computational 3D-modeling and simulations of generalized heat transport enhancement in cross-fluids with multi-nanoscale particles using Galerkin finite element method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Using ionized fluids in a magnetic field has numerous applications in engineering and industry. Therefore, heat transport in ionized fluids with thermal memory effects should be predicted using numerical simulations. To achieve this objective, the generalized heat transport in ionized fluid (following a cross-rheological constitutive relation) is modeled, and the governing system is solved numerically using the Galerkin finite element method (GFEM). After the successful implementation of GFEM, the solutions are made grid-independent and convergent. Furthermore, the results are validated with existing literature. Our numerical results show that the memory effects are favorable factors in enhancing heat transport. The Joule heating and heat generation are the characteristics that adversely affect thermal performance. Therefore, heat-absorbing and non-Ohmic dissipative fluids are recommended for optimized heat transport. Similarly, using ionized fluid in the presence of a magnetic field is recommended, as Hall and ion slip currents significantly reduce the Ohmic dissipation in the fluid during heat transport. Hall and ion slip currents induced by the movement of ionized fluid subjected to a variable magnetic field tend to cancel out the retarding effects of Lorentz force, due to which the friction force between fluid particles and the solid surface is reduced. Thus, it is concluded that if stress at the surface caused by fluid movement is required to minimize, then ionized fluid is recommended as a working fluid for transporting heat. Thermal memory effects in mono-nanofluid are stronger than those in fluids with di- and tri-nanoparticles. Moreover, the heat transfer of fluid dispersed with tri-nanoparticles is the best working fluid for thermal efficiency in transporting heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dawar A, Shah Z, Islam S (2020) Mathematical modeling and study of MHD flow of Williamson nanofluid over a nonlinear stretching plate with activation energy. Heat Transf 50(3):2558–2570. https://doi.org/10.1002/htj.21992

    Article  Google Scholar 

  2. Raza J, Mebarek-Oudina F, Chamkha AJ (2019) Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscip Model Mater Struct 15(4):737–757. https://doi.org/10.1108/MMMS-07-2018-0133

    Article  CAS  Google Scholar 

  3. Ellahi R, Sait SM, Shehzad N, Ayaz Z (2020) A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int J Numer Methods Heat Fluid Flow 30(2):834–854. https://doi.org/10.1108/HFF-06-2019-0506

    Article  Google Scholar 

  4. Raza J, Mebarek-Oudina F, Ram P, Sharma S (2020) MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation. Defect Diffus Forum 401:92–106. https://doi.org/10.4028/www.scientific.net/DDF.401.92

    Article  Google Scholar 

  5. Tlili I, Khan WA, Ramadan K (2019) MHD flow of nanofluid flow across horizontal circular cylinder: steady forced convection. J Nanofluids 8(1):179–186. https://doi.org/10.1166/jon.2019.1574

    Article  Google Scholar 

  6. Khan MI, Hayat T, Waqas M, Alsaedi A, Khan MI (2019) Effectiveness of radiative heat flux in MHD flow of Jeffrey-nanofluid subject to Brownian and thermophoresis diffusions. J Hydrodyn 31:421–427. https://doi.org/10.1007/s42241-019-0003-7

    Article  Google Scholar 

  7. Waqas M, Shehzad SA, Hayat T, Khan MI, Alsaedi A (2019) Simulation of magnetohydrodynamics and radiative heat transportation in convectively heated stratified flow of Jeffrey nanomaterial. J Phys Chem Solids 133:45–51. https://doi.org/10.1016/j.jpcs.2019.03.031

    Article  ADS  CAS  Google Scholar 

  8. Madkhali HA, Nawaz M, Alharbi SO, Elmarsy Y (2021) An enhancement of energy transport and mass in hybrid nanofluid under magnetic field and temperature and mass concentration gradients. Case Stud Therm Eng 27:101182. https://doi.org/10.1016/j.csite.2021.101182

    Article  Google Scholar 

  9. Nawaz M (2020) Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol. Phys A 537:122447. https://doi.org/10.1016/j.physa.2019.122447

    Article  MathSciNet  CAS  Google Scholar 

  10. Nawaz M, Madkhali HA, Haneef M, Alharbi SO, Alaoui MK (2021) Numerical study on thermal enhancement in hyperbolic tangent fluid with dust and hybrid nanoparticles. Int Commun Heat Mass Transf 127:105535. https://doi.org/10.1016/j.icheatmasstransfer.2021.105535

    Article  CAS  Google Scholar 

  11. Rana S, Nawaz M, Alaoui MK (2021) Three-dimensional heat transfer in the Carreau–Yasuda hybrid nanofluid with Hall and ion slip effects. Phys Scr 96(12):125215. https://doi.org/10.1088/1402-4896/ac2379

    Article  ADS  Google Scholar 

  12. Zainal NA, Nazar R, Naganthran K, Pop I (2021) MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation. Int J Numer Methods Heat Fluid Flow 31(3):858–879. https://doi.org/10.1108/HFF-03-2020-0126

    Article  Google Scholar 

  13. Waini I, Ishak A, Pop I (2020) MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Appl Math Mech 41:507–520. https://doi.org/10.1007/s10483-020-2584-7

    Article  MathSciNet  Google Scholar 

  14. Aly EH, Pop I (2020) MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid. Powder Technol 367:192–205. https://doi.org/10.1016/j.powtec.2020.03.030

    Article  CAS  Google Scholar 

  15. Sultan A, Mustafa M, Rahi M (2019) Assisting or opposing MHD flow of cross fluid along a non-isothermal surface with variable thermal conductivity. Proc Inst Mech Eng C J Mech Eng Sci 233(14):4980–4989. https://doi.org/10.1177/0954406219842600

    Article  Google Scholar 

  16. Sultan F, Khan WA, Ali M, Shahzad M, Irfan M, Khan M (2019) Theoretical aspects of thermophoresis and Brownian motion for three-dimensional flow of the cross fluid with activation energy. Pramana 92(2):21. https://doi.org/10.1007/s12043-018-1676-0

    Article  ADS  Google Scholar 

  17. Shahzad M, Ali MS, Faisal AK, Waqar HZ (2020) Computational investigation of magneto-cross fluid flow with multiple slip along wedge and chemically reactive species. Results Phys 16:102972. https://doi.org/10.1016/j.rinp.2020.102972

    Article  Google Scholar 

  18. Khan MI, Hayat T, Khan MI, Alsaedi A (2018) Activation energy impact in nonlinear radiative stagnation point flow of cross nanofluid. Int Commun Heat Mass Transf 91:216–224. https://doi.org/10.1016/j.icheatmasstransfer.2017.11.001

    Article  CAS  Google Scholar 

  19. Azam M, Shakoor A, Rasool HF, Khan M (2019) Numerical simulation for solar energy aspects on unsteady convective flow of MHD cross nanofluid: a revised approach. Int J Heat Mass Transf 131:495–505. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.022

    Article  Google Scholar 

  20. Hosseinzadeh K, Roghani S, Mogharrebi AR, Asadi A, Waqas M, Ganji DD (2020) Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder. Alex Eng J 59(5):3297–3307. https://doi.org/10.1016/j.aej.2020.04.037

    Article  Google Scholar 

  21. Azam M, Xu T, Khan M (2020) Numerical simulation for variable thermal properties and heat source/sink in flow of cross nanofluid over a moving cylinder. Int Commun Heat Mass Transf 118:104832. https://doi.org/10.1016/j.icheatmasstransfer.2020.104832

    Article  CAS  Google Scholar 

  22. Nawaz M, Rana S, Qureshi IH, Hayat T (2018) Three-dimensional heat transfer in the mixture of nanoparticles and micropolar MHD plasma with Hall and ion slip effects. AIP Adv 8(10):105109. https://doi.org/10.1063/1.5050670

    Article  ADS  CAS  Google Scholar 

  23. Nawaz M, Sadiq MA (2022) Non-Fourier heat and mass transfer enhancement in magnetohydrodynamic ionized fluid. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2121446

    Article  Google Scholar 

  24. Nazir U, Sohail M, Mukdasai K, Singh A, Alahmadi RA, Galal AM, Eldin SM (2022) Applications of variable thermal properties in Carreau material with ion slip and Hall forces towards cone using a non-Fourier approach via FE-method and mesh-free study. Front Mater 9:1054138. https://doi.org/10.3389/fmats.2022.1054138

    Article  ADS  Google Scholar 

  25. Cattaneo C (1948) Sulla Conduzione del Calore. Atti del Seminario Matematico e Fisico dell Universita di Modena e Reggio Emilia 3:83–101

  26. Christov CI (2009) On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun 36(4):481–486. https://doi.org/10.1016/j.mechrescom.2008.11.003

    Article  MathSciNet  Google Scholar 

  27. Alhowaity A, Bilal M, Hamam H, Alqarni MM, Mukdasa K, Ali A (2022) Non-Fourier energy transmission in power-law hybrid nanofluid flow over a moving sheet. Sci Rep 12:10406. https://doi.org/10.1038/s41598-022-14720-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang M, Yang N, Guo ZY (2011) Non-Fourier heat conductions in nanomaterials. J Appl Phys. https://doi.org/10.1063/1.3634078

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aziz S, Ahmad I, Khan SU, Ali N (2023) Bioconvective nonlinear radiative flow of cross nanofluid due to porous oscillating surface with variable thermal conductivity and Cattaneo–Christov model. Waves Random Complex Media. https://doi.org/10.1080/17455030.2023.2226770

    Article  Google Scholar 

  30. Batool S, Al-Khaled K, Abbas T, Hassan QMU, Khan KA, Ghachem K, Kolsi L (2023) Double diffusion Forchheimer flow of Carreau–Yasuda nanofluid with bioconvection and entropy generation: thermal optimized analysis via non-Fourier model. Case Stud Therm Eng. https://doi.org/10.1016/j.csite.2023.103172

    Article  Google Scholar 

  31. Mahesh A, Varma SVK, Raju CSK, Babu MJ, Vajravelu K, Al-Kouz W (2021) Significance of non-Fourier heat flux and radiation on PEG–water-based hybrid nanofluid flow among revolving disks with chemical reaction and entropy generation optimization. Int Commun Heat Mass Transf 127:105572. https://doi.org/10.1016/j.icheatmasstransfer.2021.105572

    Article  CAS  Google Scholar 

  32. Haneef M, Madkhali HA, Salmi A, Alharbi SO, Malik MY (2022) Numerical study on heat and mass transfer in Maxwell fluid with tri and hybrid nanoparticles. Int Commun Heat Mass Transf 135:106061. https://doi.org/10.1016/j.icheatmasstransfer.2022.106061

    Article  CAS  Google Scholar 

  33. Khan M, Manzur M, ur Rahman M (2017) On axisymmetric flow and heat transfer of cross fluid over a radially stretching sheet. Results Phys 7:3767–3772. https://doi.org/10.1016/j.rinp.2017.08.039

    Article  ADS  Google Scholar 

  34. Nawaz M, Sadiq MA (2022) Non-Fourier heat and mass transfer enhancement in magnetohydrodynamic ionized fluid. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2121446

    Article  Google Scholar 

  35. Anjum N, Khan WA, Azam M, Ali M, Waqas M, Hussain I (2023) Significance of bioconvection analysis for thermally stratified 3D cross nanofluid flow with gyrotactic microorganisms and activation energy aspects. Therm Sci Eng Prog 38:101596. https://doi.org/10.1016/j.tsep.2022.101596

    Article  CAS  Google Scholar 

  36. Aziz A, Jamshed W, Aziz T, Bahaidarah HM, Ur Rehman K (2021) Entropy analysis of Powell–Eyring hybrid nanofluid including effect of linear thermal radiation and viscous dissipation. J Therm Anal Calorim 143:1331–1343. https://doi.org/10.1007/s10973-020-10210-2

    Article  CAS  Google Scholar 

  37. Madkhali HA, Ahmed M, Nawaz M, Alharbi SO, Alqahtani AS, Malik MY (2023) Computational study on the effects of Brownian motion and thermophoresis on thermal performance of cross fluid with nanoparticles in the presence of Ohmic and viscous dissipation in chemically reacting regime. Comput Part Mech. https://doi.org/10.1007/s40571-023-00687-7

    Article  Google Scholar 

  38. Madkhali HA, Ahmed M, Nawaz M, Alharbi SO, Alqahtani AS, Malik MY (2023) Numerical study on the role of ternary nanoparticles on heat transfer enhancement in MHD flow of cross-rheological-fluid. Case Stud Therm Eng 51:103579. https://doi.org/10.1016/j.csite.2023.103579

    Article  Google Scholar 

  39. Madkhali HA, Nawaz M, Rana S, Alharbi SO, El-Shafay AS, Ali MR, Hendy AS (2024) Effect of Cattaneo–Christov heat and mass flux in Carreau–Yasuda tri-nanofluid. Case Stud Therm Eng 53:103787. https://doi.org/10.1016/j.csite.2023.103787

    Article  Google Scholar 

  40. Rana S, Nawaz M, Alharbi SO (2023) Detailed investigation on thermal enhancement and mass transport in 3D flow of Carreau–Yasuda ternary and hybrid nanofluids using the finite element method. Int J Numer Methods Heat Fluid Flow 33(12):4037–4061. https://doi.org/10.1108/HFF-02-2023-0062

    Article  Google Scholar 

  41. Madkhali HA, Nawaz M, Alharbi SO (2023) Computational investigation of homogeneous-heterogeneous reactions in fluid with transport mechanisms: a finite element simulations approach. Ain Shams Eng J 15(3):102449. https://doi.org/10.1016/j.asej.2023.102449

    Article  Google Scholar 

  42. Qian WM, Ahmed B, Khan SU, Khan MI, Hamid AH (2021) Novel scientific simulations (finite element method) for peristaltic blood flow in an asymmetric channel: applications of magnetic and inertial forces. J Magn 26(1):129–140

    Article  Google Scholar 

  43. Saeed M, Ahmad B, Abbas T, Khan MI, Khan SU (2022) Consequences of thermal slip flow of non-Newtonian fluid with temperature-dependent thermal conductivity. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2105983

    Article  Google Scholar 

  44. Arif U, Memon MA, Saif RS, El-Shafay AS, Nawaz M, Muhammad T (2022) Triple diffusion with heat transfer under different effects on magnetized hyperbolic tangent nanofluid flow. Proc Inst Mech Eng E J Process Mech Eng. https://doi.org/10.1177/09544089221079139

  45. AlBaidani MM, Lashin MM, Saif RS, Ganie AH (2023) Homogeneous–heterogeneous reactions for Maxwell nanofluid flow over an elongating cylindrical pipe via finite element method. ZAMM J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik. https://doi.org/10.1002/zamm.202100386

  46. Asghar Z, Saif RS, Ghaffari AZ (2023) Numerical study of boundary stresses on Jeffery–Hamel flow subject to Soret/Dufour effects. Proc Inst Mech Eng C J Mech Eng Sci 237(5):1088–1105. https://doi.org/10.1177/09544062221126646

    Article  CAS  Google Scholar 

  47. Khan JA, Mustafa M, Hayat T, Alsaedi A (2015) Three-dimensional flow of nanofluid over a non-linearly stretching sheet: an application to solar energy. Int J Heat Mass Transf 86:158–164. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.078

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by Kuwait University Research Grant No. [SM01/23].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulaziz Alsenafi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsenafi, A., Nawaz, M. Computational 3D-modeling and simulations of generalized heat transport enhancement in cross-fluids with multi-nanoscale particles using Galerkin finite element method. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-024-00727-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-024-00727-w

Keywords

Navigation