Skip to main content
Log in

A modified mathematical model for thermo-viscous thermal conduction incorporating memory-based derivatives and the Moore–Gibson–Thomson equation

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Analyzing the viscoelastic characteristics of materials, especially polymers, is essential for understanding their mechanical properties and their capacity to function in different conditions. This paper presents a novel viscoelastic heat transfer model that integrates a memory-based derivative with the Moore–Gibson–Thomson (MGT) equation. The purpose is to examine the viscoelastic characteristics of materials and assess their response to external stresses and deformations over a certain period of time. In addition to incorporating the third-type thermoelastic model that Green and Naghdi provided, the derivation of this thermo-viscoelastic model included the integration of heat flow and its time derivative into Fourier’s equation. To verify and understand the proposed model, it was applied to consider an unbounded viscoelastic semi-space immersed in a uniform magnetic field and exposed to non-Gaussian laser radiation as a heat source. An analysis of computational results was conducted to evaluate how the behavior of the field variables under consideration is affected by viscoelastic coefficients and memory-based derived factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li, X., Wan, L., Lin, F., Liu, C.: Study on the testing method of relaxation modulus under spherical indenter loading. Adv. Mater. Sci. Eng. 2022, 7171680 (2022)

    Article  Google Scholar 

  2. Lee, H.J.: Uniaxial Constitutive Modeling of Asphalt Concrete Using Viscoelasticity and Continuum Damage Theory. North Carolina State University (1996)

    Google Scholar 

  3. Zhao, J., Zhao, W., Xie, K., Yang, Y.: A fractional creep constitutive model considering the viscoelastic-viscoplastic coexistence mechanism. Materials 16(15), 6131 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Darabi, M.K., Al-Rub, R.K.A., Masad, E.A., Huang, C.W., Little, D.N.: A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials. Int. J. Solids Struct. 48(1), 191–207 (2011)

    Article  Google Scholar 

  5. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity–An introduction. Springer, Berlin (2008)

    Book  Google Scholar 

  6. Park, S.W.: Analytical modeling of viscoelastic dampers for structural and vibration control. Int. J. Solids Struct. 38(44–45), 8065–8092 (2001)

    Article  Google Scholar 

  7. Guo, Q., Zaïri, F., Guo, X.: A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part II: experimental studies and parameter identification. Int. J. Plast 101, 58–73 (2018)

    Article  CAS  Google Scholar 

  8. Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer Science & Business Media, Cham (2012)

    Google Scholar 

  9. Motamed, A., Bhasin, A., Liechti, K.M.: Constitutive modeling of the nonlinearly viscoelastic response of asphalt binders; incorporating three-dimensional effects. Mech. Time-Dependent Mater. 17, 83–109 (2013)

    Article  ADS  CAS  Google Scholar 

  10. Airey, G.D., Rahimzadeh, B., Collop, A.C.: Linear rheological behavior of bituminous paving materials. J. Mater. Civ. Eng. 16(1), 212–220 (2004)

    Article  CAS  Google Scholar 

  11. Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11(1), 291–356 (1962)

    Article  MathSciNet  Google Scholar 

  12. Sternberg, E.: On the Analysis of Thermal Stresses in Viscoelastic Solids. Division of Applied Mathematics, Brown University (1963)

    Book  Google Scholar 

  13. Ilioushin, A.A.: The approximation method of calculating the constructures by linear thermal viscoelastic theory. Mekhanika Polimerov 2, 210–221 (1968)

    Google Scholar 

  14. Koltunov, M.A.: Creeping and Relaxation. Nauka, Moscow (1976)

    Google Scholar 

  15. Megahid, S.F., Abouelregal, A.E., Askar, S.S., Marin, M.: Study of thermoelectric responses of a conductive semi-solid surface to variable thermal shock in the context of the Moore-Gibson-Thompson thermoelasticity. Axioms 12(5), 659 (2023)

    Article  Google Scholar 

  16. Abouelregal, A.E., Sedighi, H.M., Megahid, S.F.: Photothermal-induced interactions in a semiconductor solid with a cylindrical gap due to laser pulse duration using a fractional MGT heat conduction model. Arch. Appl. Mech. 93(4), 2287–2305 (2023)

    Article  ADS  Google Scholar 

  17. Tanaka, K., Tanaka, Y., Watanabe, H., Poterasu, V.F., Sugano, Y.: An improved solution to thermoelastic material design in functionally gradient materials: scheme to reduce thermal stresses. Comput. Methods Appl. Mech. Eng. 109(3–4), 377–389 (1993)

    Article  ADS  Google Scholar 

  18. Boley, B.A., Weiner, J.H.: Theory of Thermal Stresses. Courier Corporation (2012)

    Google Scholar 

  19. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(1), 240–253 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(3), 299–309 (1967)

    Article  ADS  Google Scholar 

  21. Green, A.E., Lindsay, K.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  Google Scholar 

  22. Green, A.E., Naghdi, P.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 432(1885), 171–194 (1991)

    ADS  MathSciNet  Google Scholar 

  23. Green, A.E., Naghdi, P.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15(2), 253–264 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  24. Green, A.E., Naghdi, P.: Thermoelasticity without energy dissipation. J. Elast. 31(1), 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  25. Tzou, D.Y.: Thermal shock phenomena under high rate response in solids. Ann. Rev. Heat Transf. 4(2), 111–185 (1992)

    Article  CAS  Google Scholar 

  26. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. ASME J. Heat Mass Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  27. Oosthuizen, P.H., Carscallen, W.E.: Compressible Fluid Flow. McGraw-Hill, New York (1997)

    Google Scholar 

  28. Conti, M., Pata, V., Quintanilla, R.: Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature. Asymptot. Anal. 120(1–2), 1–21 (2020)

    MathSciNet  Google Scholar 

  29. Pellicer, M., Quintanilla, R.: On uniqueness and instability for some thermomechanical problems involving the Moore-Gibson-Thompson equation. Z. Angew. Math. Phys. 71(1), 84 (2020)

    Article  MathSciNet  Google Scholar 

  30. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids 24(10), 4020–4031 (2019)

    Article  MathSciNet  Google Scholar 

  31. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)

    Google Scholar 

  32. Abouelregal, A.E., Marin, M., Öchsner, A.: The influence of a non-local Moore-Gibson-Thompson heat transfer model on an underlying thermoelastic material under the model of memory-dependent derivatives. Contin. Mech. Thermodyn. 35(2), 545–562 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  33. Abouelregal, A.E., Marin, M., Altenbach, H.: Thermally stressed thermoelectric microbeam supported by Winkler foundation via the modified Moore-Gibson-Thompson thermoelasticity theory. ZAMM J. Appl. Math. Mech. Zeitschrift für Angew. Math. Mech. 103(9), e202300079 (2023)

    Article  MathSciNet  Google Scholar 

  34. Marin, M., Seadawy, A.R., Vlase, S., Chirila, A.: On mixed problem in thermoelasticity of type III for Cosserat media. J. Taibah Univ. Sci. 16, 1264–1274 (2022)

    Article  Google Scholar 

  35. Negrean, I., Crişan, A.V., Vlase, S.: A new approach in analytical dynamics of mechanical systems. Symmetry 12(1), 95 (2020)

    Article  ADS  Google Scholar 

  36. Abouelregal, A.E.: Generalized thermoelastic MGT model for a functionally graded heterogeneous unbounded medium containing a spherical hole. Eur. Phys. J. Plus 137(6), 953 (2022)

    Article  MathSciNet  Google Scholar 

  37. Shaw, S.: Theory of generalized thermoelasticity with memory-dependent derivatives. J. Eng. Mech. 145(1), 04019003 (2019)

    Article  Google Scholar 

  38. Wang, J.L., Li, H.F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62(1), 1562–1567 (2011)

    MathSciNet  Google Scholar 

  39. Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014)

    Article  MathSciNet  Google Scholar 

  40. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mech. Adv. Mater. Struct. 23(3), 545–553 (2016)

    Article  Google Scholar 

  41. Sarkar, I., Mukhopadhyay, B.: Generalized thermo-viscoelasticity with memory-dependent derivative: uniqueness and reciprocity. Arch. Appl. Mech. 91, 965–977 (2021)

    Article  ADS  Google Scholar 

  42. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Modeling of memory-dependent derivative in generalized thermoelasticity. Eur. Phys. J. Plus 131, 1–12 (2016)

    Article  Google Scholar 

  43. Al-Jamel, A., Al-Jamal, M.F., El-Karamany, A.: A memory-dependent derivative model for damping in oscillatory systems. J. Vib. Control 24(9), 2221–2229 (2018)

    Article  MathSciNet  Google Scholar 

  44. Abouelregal, A.E., Sofiyev, A.H., Sedighi, H.M., Fahmy, M.A.: Generalized heat equation with the Caputo-Fabrizio fractional derivative for a nonsimple thermoelastic cylinder with temperature-dependent properties. Phys. Mesomech. 26(2), 224–240 (2023)

    Article  Google Scholar 

  45. Abouelregal, A.E., Nasr, M.E., Khalil, K.M., Abouhawwash, M., Moaaz, O.: Effect of the concept of memory-dependent derivatives on a nanoscale thermoelastic micropolar material under varying pulsed heating flow. Iran. J. Sci. Technol. Trans. Mech. Eng. (2023). https://doi.org/10.1007/s40997-023-00606-4

    Article  Google Scholar 

  46. Zakaria, K., Sirwah, M.A., Abouelregal, A.E., Rashid, A.F.: Photothermoelastic survey with memory-dependent response for a rotating solid cylinder under varying heat flux via dual phase lag model. Pramana 96(2), 219 (2022)

    Article  ADS  Google Scholar 

  47. Abouelregal, A.E.: An advanced model of thermoelasticity with higher-order memory-dependent derivatives and dual time-delay factors. Waves Random Complex Med. 32(4), 2918–2939 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  48. Abouelregal, A.E., Mohammed, F.A., Benhamed, M., Zakria, A., Ahmed, I.E.: Vibrations of axially excited rotating micro-beams heated by a high-intensity laser in light of a thermo-elastic model including the memory-dependent derivative. Math. Comput. Simul. 199, 81–99 (2022)

    Article  MathSciNet  Google Scholar 

  49. Abouelregal, A.E., Tiwari, R.: The thermoelastic vibration of nano-sized rotating beams with variable thermal properties under axial load via memory-dependent heat conduction. Meccanica 57(6), 2001–2025 (2022)

    Article  MathSciNet  Google Scholar 

  50. Predeleanu, M.: On thermal stresses in visco-elastic bodies. Bull. Math. Soc. Sci. Math. Phys. République Populaire Roumaine 3(2), 223–228 (1959)

    MathSciNet  Google Scholar 

  51. Nowacki, W.: Thermal stresses due to the action of heat sources in a viscoelastic space. Archiwum Mechaniki Stosowanej 1(9), 111 (1959)

    MathSciNet  Google Scholar 

  52. Navarro, C.B.: Asymptotic stability in linear thermoviscoelasticity. J. Math. Anal. Appl. 65(2), 399–431 (1978)

    Article  MathSciNet  Google Scholar 

  53. Foutsitzi, G., Kalpakidis, V.K., Massalas, C.V.: On the existence and uniqueness in linear thermoviscoelasticity. ZAMM J. Appl. Math. Mech. Zeitschrift Für Angew. Math. Mech. 77(1), 33–43 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  54. Christensen, R.: Theory of viscoelasticity: an introduction. Elsevier (2012)

    Google Scholar 

  55. Sherief, H.H., Hamza, F.A., Abd El-Latief, A.M.: 2D problem for a half-space in the generalized theory of thermo-viscoelasticity. Mech. Time-Dependent Mater. 19(2), 557–568 (2015)

    Article  ADS  Google Scholar 

  56. Sherief, H.H., Allam, M.N., El-Hagary, M.A.: Generalized theory of thermoviscoelasticity and a half-space problem. Int. J. Thermophys. 32(4), 1271–1295 (2011)

    Article  ADS  CAS  Google Scholar 

  57. Sherief, H.H., El-Hagary, M.A.: Fractional order theory of thermo-viscoelasticity and application. Mech. Time-Dependent Mater. 24(2), 179–195 (2020)

    Article  ADS  Google Scholar 

  58. Yadav, A.K.: Reflection of plane waves in a fraction-order generalized magneto-thermoelasticity in a rotating triclinic solid half-space. Mech. Adv. Mater. Struct. 29(25), 4273–4290 (2022)

    Article  Google Scholar 

  59. Zenkour, A.M., Abouelregal, A.E.: The fractional effects of a two-temperature generalized thermoelastic semi-infinite solid induced by pulsed laser heating. Arch. Mech. 67(1), 53–73 (2015)

    MathSciNet  Google Scholar 

  60. Abbas, I.A.: Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity. Appl. Math. Model. 39(20), 6196–6206 (2015)

    Article  MathSciNet  Google Scholar 

  61. Alzahrani, F.S., Abbas, I.A.: Generalized thermoelastic diffusion in a nanoscale beam using eigenvalue approach. Acta Mech. 227(2), 955–968 (2016)

    Article  MathSciNet  Google Scholar 

  62. Zakian, V., Littlewood, R.K.: Numerical inversion of Laplace transforms by weighted least-squares approximation. Comput. J. 16(1), 66–68 (1973)

    Article  MathSciNet  Google Scholar 

  63. Ichikawa, S., Kishima, A.: Applications of Fourier series technique to inverse Laplace transform. Mem. Fac. Eng. Kyoto Univ. 34(1), 53–67 (1972)

    Google Scholar 

  64. Stehfest, H.: Remark on algorithm 368: numerical inversion of Laplace transforms. Commun. ACM 13(8), 624 (1970)

    Article  Google Scholar 

  65. Dubner, H., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. ACM (JACM) 15(1), 115–123 (1968)

    Article  MathSciNet  Google Scholar 

  66. Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 10(1), 113–132 (1984)

    Article  MathSciNet  Google Scholar 

  67. Lee, S.T., Chien, M.C.H., Culham, W.E.: Vertical single-well pulse testing of a three-layer stratified reservoir. In SPE Annual technical conference and exhibition. OnePetro (1984)

  68. Li, C., Guo, H., Tian, X., He, T.: Generalized thermoviscoelastic analysis with fractional order strain in a thick viscoelastic plate of infinite extent. J. Therm. Stresses 42(6), 1051–1070 (2019)

    Article  Google Scholar 

  69. Ezzat, M.A.: Fractional thermo-viscoelasticity theory with and without energy dissipation. Waves Random Complex Med. 32(2), 1903–1922 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  70. Sur, A.: Non-local memory-dependent heat conduction in a magneto-thermoelastic problem. Waves Random Complex Med. 32(1), 251–271 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  71. Abouelregal, A.E., Atta, D., Sedighi, H.M.: Vibrational behavior of thermoelastic rotating nanobeams with variable thermal properties based on memory-dependent derivative of heat conduction model. Arch. Appl. Mech. 93(1), 197–220 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors present their appreciation to King Saud University for funding the publication of this research through the Researchers Supporting Program (RSP2024R167), King Saud University, Riyadh, Saudi Arabia.

Funding

Researchers Supporting Project number (RSP2024R167), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Abouelregal.

Ethics declarations

Author contributions

All authors discussed the results, reviewed, and approved the final version of the manuscript.

Conflicts of interest

The authors declared no potential conflicts of interest concerning the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouelregal, A.E., Marin, M., Askar, S.S. et al. A modified mathematical model for thermo-viscous thermal conduction incorporating memory-based derivatives and the Moore–Gibson–Thomson equation. Continuum Mech. Thermodyn. (2024). https://doi.org/10.1007/s00161-024-01284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-024-01284-6

Keywords

Navigation