Skip to main content

Advertisement

Log in

Resistance risk assessment, cross-resistance potential and realized heritability of resistance to methomyl in Musca domestica Linnaeus

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The use of insecticides in agricultural settings often exerts negative effects on nontarget species. Methomyl, a broad-spectrum carbamate insecticide, is recommended to manage a number of insect pests of the cotton crop. Recently, Musca domestica, which is a nontarget insect species in cotton fields, has shown resistance to methomyl in Pakistan. The present study tried to assess resistance-risk assessment, rapidity of resistance development to methomyl, cross-resistance potential to other insecticides, resistance heritability and to forecast the projected rate of resistance development under field conditions. For this purpose, a field strain of M. domestica with 186 fold resistance to methomyl was re-selected in the laboratory for eight consecutive generations. Consequently, LD50 values increased rapidly (126.64 ng/fly to 3112.79 ng/fly) compared to those before selection experiments. Similarly, RR values increased from 186 to 3113 fold as a result of the selection process. However, resistance to methomyl did not remain stable when the selected strain (Meth-SEL) reared for the next five generations in a pesticide free environment. The Meth-SEL strain also developed cross-resistance to permethrin. The realized heritability (h2) value for the Meth-SEL strain was 0.39 with 27% average mortality of M. domestica. Assuming the standard deviation (σp) value 0.27 and the h2 value 0.39 for eight generations of continuous exposure to methomyl, then five, seven, eight, ten and twelve generations at 90, 80, 70, 60 and 50% selection intensity, respectively, would be required for a tenfold increase in the LD50 value of methomyl. In conclusion, the Meth-SEL strain of M. domestica exhibited a high risk of resistance development to methomyl under continuous selection pressure. Resistance increased rapidly during selection experiments that reflect the probability of resistance development under field conditions if M. domestica receive exposures to methomyl during its applications for the management of target pest species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas N, Ismail M, Ejaz M, Asghar I, Irum A, Shad SA, Binyameen M (2018) Assessment of field evolved resistance to some broad-spectrum insecticides in cotton jassid, Amrasca devastans from southern Punjab, Pakistan. Phytoparasitica 46:411–419

    Article  CAS  Google Scholar 

  • Ahmad M, Arif MI, Ahmad Z (2001) Resistance to carbamate insecticides in Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan. Crop Protect 20:427–432

    Article  CAS  Google Scholar 

  • Ahmad M, Arif MI, Ahmad M (2007) Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Protect 26:809–817

    Article  CAS  Google Scholar 

  • Ali M (2018) Handbook on pesticides standardized in the Punjab for Agriculture Extension workers: the pesticides registered with recommendations for safe handling and use in Pakistan. Government of Punjab, Pakistan

  • Amin M, Azad H, Hossain S, Tithi D (2013) Pest, predator and pollinator abundance in the cotton field of Bangladesh: A climate change country. Clim Change Environ 1:100–106

    Google Scholar 

  • Balikai R (2014) Bio-efficacy of Methomyl 40 SP (Dunet 40 SP) against chickpea pod borer and its phytotoxicity. Ann Entomol 32:49–55

    Google Scholar 

  • Bues R, Bouvier J, Boudinhon L (2005) Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the south of France. Crop Protect 24:814–820

    Article  CAS  Google Scholar 

  • Byrne FJ, Toscano NC (2001) An insensitive acetylcholinesterase confers resistance to methomyl in the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 94:524–528

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro MC, Liber K, Headley JV, Peru KM, Morrissey CA (2018) Community‐level and phenological responses of emerging aquatic insects exposed to 3 neonicotinoid insecticides: An in situ wetland limnocorral approach. Environ Toxicol Chem 37:2401–2412

    Article  CAS  PubMed  Google Scholar 

  • Chanda E, Thomsen EK, Musapa M, Kamuliwo M, Brogdon WG, Norris DE, Masaninga F, Wirtz R, Sikaala CH, Muleba M (2016) An operational framework for insecticide resistance management planning. Emerging Infect Dis 22:773

    Article  CAS  Google Scholar 

  • Cheghib Y, Chouahda S, Soltani N (2020) Side-effects of a neonicotinoid insecticide (actara®) on a non-target larvivorous fish Gambusia affinis: growth and biomarker responses. Egyptian J Aquatic Res 46:167–172

    Article  Google Scholar 

  • Consortium R (2013) Heterogeneity of selection and the evolution of resistance. Trends Ecol Evol 28:110–118

    Article  Google Scholar 

  • Coustau C, Chevillon C, ffrench-Constant R (2000) Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol Evol 15:378–383

    Article  CAS  PubMed  Google Scholar 

  • Desaeger JA, Rivera M, Leighty R, Portillo H (2011) Effect of methomyl and oxamyl soil applications on early control of nematodes and insects. Pest Manage Sci 67:507–513

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Douka C, Fohouo F-NT (2014) Foraging and pollination activity of Musca domestica L.(Diptera: Muscidae) on flowers of Ricinus communis L.(Euphorbiaceae) at Maroua, Cameroon. J Biodiversity Environ Sci 4:63–76

    Google Scholar 

  • El-Heneidy A, Khidr A, Taman A (2015) Side-effects of insecticides on non-target organisms: 1-In Egyptian cotton fields. Egyptian. J Biol Pest Control 25:685

    Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics. Longman, London

  • Falconer D, Mackay T (1996) Introduction to Quantitative Genetics Longman London Google Scholar, 4th ed, Longman, Harlow, UK

  • Finney D (1971) A statistical treatment of the sigmoid response curve. Probit analysis, 3rd edn. Cambridge University Press, London 333

  • Freeman JC, Smith LB, Silva JJ, Fan Y, Sun H, Scott JG (2021) Fitness studies of insecticide resistant strains: lessons learned and future directions. Pest Manage. Sci. 77:3847–3856

    Article  CAS  Google Scholar 

  • Gyawali K (2018) Pesticide uses and its effects on public health and environment. J Health Promotion 6:28–36

    Article  Google Scholar 

  • Hafeez M, Ullah F, Khan MM, Li X, Zhang Z, Shah S, Imran M, Assiri MA, Fernández-Grandon GM, Desneux N (2022) Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. Environ Sci Pollut Res 29:1746–1762

  • Hanif K, Zubair M, Hussain D, Ali S, Saleem M, Khan HAA, Nazir T, ul Hassan MW (2022) Biopesticides and insect pest management. Int J Trop Insect Sci, 42;3631–3637

  • Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94:135–155

    Article  PubMed  Google Scholar 

  • Huang S, Xu J, Han Z (2006) Baseline toxicity data of insecticides against the common cutworm Spodoptera litura (Fabricius (and a comparison of resistance monitoring methods. Int J Pest Manage 52:209–213

  • Issa R (2019) Musca domestica acts as transport vector hosts. Bull Natl Res Centre 43:1–5

    Article  Google Scholar 

  • Khamesipour F, Lankarani KB, Honarvar B, Kwenti TE (2018) A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health 18:1–15

    Article  Google Scholar 

  • Khan HA, Akram W, Shad SA (2014) Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Trop 130:148–154

    Article  CAS  PubMed  Google Scholar 

  • Khan HA, Akram W, Iqbal N (2015a) Selection and Preliminary Mechanism of Resistance to Profenofos in a Field Strain of Musca domestica (Diptera: Muscidae) from Pakistan. J Med Entomol 52:1013–1017

    Article  CAS  PubMed  Google Scholar 

  • Khan HAA, Shad SA, Akram W (2012) Effect of livestock manures on the fitness of house fly, Musca domestica L.(Diptera: Muscidae). Parasitol Res 111:1165–1171

    Article  PubMed  Google Scholar 

  • Khan HAA, Akram W, Shad SA (2013a) Resistance to conventional insecticides in Pakistani populations of Musca domestica L.(Diptera: Muscidae): a potential ectoparasite of dairy animals. Ecotoxicology 22:522–527

    Article  CAS  PubMed  Google Scholar 

  • Khan HAA, Akram W, Shad SA, Razaq M, Naeem-Ullah U, Zia K (2013b) A cross sectional survey of knowledge, attitude and practices related to house flies among dairy farmers in Punjab, Pakistan. J Ethnobiol Ethnomed 9:1–10

    Article  Google Scholar 

  • Khan HAA (2014) Insecticide resistance, survival fitness and chemical based management strateigies for house fly, Musca domestica L., from dairies of Punjab, Pakistan. Doctoral Thesis, Bahauddin Zakariya University, Multan, Pakistan, Higher Education Commission (HEC), Pakistan

  • Khan HAA, Akram W, Haider MS (2015b) Genetics and mechanism of resistance to deltamethrin in the house fly, Musca domestica L., from Pakistan. Ecotoxicology 24:1213–1220

    Article  PubMed  Google Scholar 

  • Khan HAA, Akram W, Haider MS (2015c) Genetics and mechanism of resistance to deltamethrin in the house fly, Musca domestica L., from Pakistan. Ecotoxicology 24:1213–1220

    Article  PubMed  Google Scholar 

  • Khan HAA (2019) Characterization of permethrin resistance in a Musca domestica strain: resistance development, cross‐resistance potential and realized heritability. Pest Manage Sci 75:2969–2974

    Article  CAS  Google Scholar 

  • Khan HAA (2020) Side effects of insecticidal usage in rice farming system on the non-target house fly Musca domestica in Punjab, Pakistan. Chemosphere 241:125056

    Article  CAS  PubMed  Google Scholar 

  • Khan HAA, Zafar R, Nasir I (2021) Toxicity of seventeen insecticides to Camponotus sericeus (Hymenoptera: Formicidae). J Asia Pacif Entomol 24:217–220

    Article  Google Scholar 

  • Khan HAA (2022) An impact assessment of insecticides application on the non-targeted mosquito Aedes albopictus (Skuse) in Punjab rice fields, Pakistan. PeerJ 10:e13697

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan HAA (2023) Monitoring resistance to methomyl and synergism in the non-target Musca domestica from cotton fields of Punjab and Sindh provinces, Pakistan. Sci Rep 13:7074

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kristensen M, Spencer AG, Jespersen JB (2001) The status and development of insecticide resistance in Danish populations of the housefly Musca domestica L. Pest Manag Sci 57:82–89

    Article  CAS  PubMed  Google Scholar 

  • Litchfield JA, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

  • Liu N, Yue X (2000) Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J Econ Entomol 93:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Li J, Zhang Y, Shan C, Gao X (2017) Inheritance mode and mechanisms of resistance to imidacloprid in the house fly Musca domestica (Diptera: Muscidae) from China. PLoS One 12:e0189343

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik A, Singh N, Satya S (2007) House fly (Musca domestica): a review of control strategies for a challenging pest. J Environ Sci Health Part B 42:453–469

    Article  CAS  Google Scholar 

  • Memmi BK (2010) Mortality and knockdown effects of imidacloprid and methomyl in house fly (Musca domestica L., Diptera: Muscidae) populations. J Vector Ecol 35:144–148

    Article  PubMed  Google Scholar 

  • Mironidis GK, Kapantaidaki D, Bentila M, Morou E, Savopoulou‐Soultani M, Vontas J (2013) Resurgence of the cotton bollworm Helicoverpa armigera in northern Greece associated with insecticide resistance. Insect Sci 20:505–512

    Article  CAS  PubMed  Google Scholar 

  • Mužinić V, Želježić D (2018) Non-target toxicity of novel insecticides. Arh Hig Rada Toksikol 69:86–101

    Article  PubMed  Google Scholar 

  • Ranganathan M, Narayanan M, Kumarasamy S (2022) Importance of metabolic enzymes and their role in insecticide resistance. In New and future development in biopesticide research: Biotechnological exploration. Springer, Singapore, pp. 243–260

  • Ríos-Díez J, Saldamando-Benjumea C (2011) Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: a study of the genetic basis of resistance. J Econ Entomol 104:1698–1705

    Article  PubMed  Google Scholar 

  • Robertson JL, Jones MM, Olguin E, Alberts B (2017) Bioassays with arthropods. CRC Press, Taylor & Francis Group, Boca Raton

  • Roush R (1997) Managing resistance to transgenic crops. In: Carozzi N, Koziel M (eds.) Advances in insect control: the role of transgenic plants. Taylor & Francis, London, United Kingdom, pp. 271–294

  • Saeed S, Sajjad A, Kwon O, Kwon YJ (2008) Fidelity of Hymenoptera and Diptera pollinators in onion (Allium cepa L.) pollination. Entomological Res 38:276–280

    Article  Google Scholar 

  • Safi NHZ, Ahmadi AA, Nahzat S, Ziapour SP, Nikookar SH, Fazeli-Dinan M, Enayati A, Hemingway J (2017) Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malar J 16:1–10

    Article  Google Scholar 

  • Saleem MA, Ahmad M, Ahmad M, Aslam M, Sayyed AH (2008) Resistance to selected organochlorin, organophosphate, carbamate and pyrethroid, in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. J Econ Entomol 101:1667–1675

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Bayo F (2021) Indirect effect of pesticides on insects and other arthropods. Toxics 9:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos V, De Siqueira H, Da Silva J, De Farias M (2011) Insecticide resistance in populations of the diamondback moth, Plutella xylostella (L.)(Lepidoptera: Plutellidae), from the state of Pernambuco, Brazil. Neotrop Entomol 40:264–270

    Article  CAS  PubMed  Google Scholar 

  • Sayyed A, Wright D (2001) Cross-resistance and inheritance of resistance Cry1Ac toxin in diamondback moth, Plutella xylostella from lowland Malaysia. Pest Manage Sci 57:413–421

    Article  CAS  Google Scholar 

  • Sayyed AH, Attique MNR, Khaliq A, Wright DJ (2005) Inheritance of resistance and cross‐resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Pest Manag Sci 61:636–642

    Article  CAS  PubMed  Google Scholar 

  • Sayyed AH, Ahmad M, Crickmore N (2008) Fitness costs limit the development of resistance to indoxacarb and deltamethrin in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol 101:19271933

    Article  CAS  PubMed  Google Scholar 

  • Scott JG (1990) Investigating mechanisms of insecticide resistance: methods, strategies, and pitfalls. In Pesticide resistance in arthropods. Springer, Boston, US, pp 39–57

  • Scott JG, Leichter CA, Rinkevihc FD, Harris SA, Su C, Aberegg LC, Moon R, Geden CJ, Gerry AC, Taylor DB (2013) Insecticide resistance in house flies from the United States: resistance levels and frequency of pyrethroid resistance alleles. Pestic Biochem Physiol 107:377–384

    Article  CAS  PubMed  Google Scholar 

  • Serrão JE, Plata-Rueda A, Martínez LC, Zanuncio JC (2022) Side-effects of pesticides on non-target insects in agriculture: A mini-review. Sci Nat 109:17

    Article  Google Scholar 

  • Sever HC, Heim JR, Lydy VR, Fung CY, Hartz KEH, Giroux MS, Andrzejczyk N, Major KM, Poynton HC, Lydy MJ (2020) Recessivity of pyrethroid resistance and limited interspecies hybridization across Hyalella clades supports rapid and independent origins of resistance. Environ Pollut 266:115074

    Article  CAS  PubMed  Google Scholar 

  • Shad SA, Sayyed AH, Saleem MA (2010) Cross‐resistance, mode of inheritance and stability of resistance to emamectin in Spodoptera litura (Lepidoptera: Noctuidae). Pest Manage Sci 66:839–846

    Article  CAS  Google Scholar 

  • Shelton A, Sances F, Hawley J, Tang J, Boune M, Jungers D, Collins H, Farias J (2000) Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera: Plutellidae) in California in 1997. J Econ Entomol 93:931–936

    Article  CAS  PubMed  Google Scholar 

  • Sparks TC, Dripps JE, Watson GB, Paroonagian D (2012) Resistance and cross-resistance to the spinosyns–a review and analysis. Pestic Biochem Physiol 102:1–10

    Article  CAS  Google Scholar 

  • Sparks TC, Storer N, Porter A, Slater R, Nauen R (2021) Insecticide resistance management and industry: the origins and evolution of the I nsecticide R esistance A ction C ommittee (IRAC) and the mode of action classification scheme. Pest Manage Sci 77:2609–2619

    Article  CAS  Google Scholar 

  • Su J, Sun X-X (2014) High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province, China. Crop Protect 61:58–63

    Article  CAS  Google Scholar 

  • Sun C-N, Chi H, Feng H-T (1978) Diamondback moth resistance to diazinon and methomyl in Taiwan. J Econ Entomol 71:551–554

    Article  CAS  Google Scholar 

  • Sunitha V, Singh T, Supriya G, Satyanarayana J (2020) Insecticide resistance monitoring of diamond back moth, Plutella xylostella (Linn.) in Delhi population. J Entomol Zool Stud 8:1706–1712

    Google Scholar 

  • Tabashnik BE (1992) Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 85:1551–1559

    Article  Google Scholar 

  • Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K, Adang MJ (1994) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci 91:4120–4124

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Tong H, Su Q, Zhou X, Bai L (2013) Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. J Pest Sci 86:599–609

    Article  Google Scholar 

  • Yu S (1991) Insecticide resistance in the fall armyworm, Spodoptera frugiperda (JE Smith). Pestic Biochem Physiol 39:84–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sincere thanks to the University of the Punjab, Lahore, for providing funds to carry out this study under the title “investigating mode of inheritance and mechanism of resistance to methomyl in Musca domestica” FY2022-23.

Author contributions

Conceptualization: HAAK. Methodology: HAAK. Formal analysis and investigation: HAAK.; Writing - original draft preparation: HAAK.; Writing – review and editing: HAAK. Resources: HAAK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Azhar Ali Khan.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

This article does not describe any studies involving human participants performed by the authors. All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.A.A. Resistance risk assessment, cross-resistance potential and realized heritability of resistance to methomyl in Musca domestica Linnaeus. Ecotoxicology 33, 226–234 (2024). https://doi.org/10.1007/s10646-024-02742-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-024-02742-2

Keywords

Navigation